Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Enskog kinetic theory for a model of a confined quasi-two-dimensional granular fluid

Loading...
Thumbnail Image

Full text at PDC

Publication date

2018

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Amer Physical Soc
Citations
Google Scholar

Citation

Abstract

The Navier-Stokes transport coefficients for a model of a confined quasi-two-dimensional granular gas of smooth inelastic hard spheres are derived from the Enskog kinetic equation. A normal solution to this kinetic equation is obtained via the Chapman-Enskog method for states close to the local homogeneous state. The analysis is performed to first order in spatial gradients, allowing the identification of the Navier-Stokes transport coefficients associated with the heat and momentum fluxes. The transport coefficients are determined from the solution to a set of coupled linear integral equations analogous to those for elastic collisions. These integral equations are solved by using the leading terms in a Sonine polynomial expansion. The results are particularized to the relevant state with stationary temperature, where explicit expressions for the Navier-Stokes transport coefficients are given in terms of the coefficient of restitution and the solid volume fraction. The present work extends to moderate densities previous results [Brey et al. Phys. Rev. E 91, 052201 (2015)] derived for low-density granular gases.

Research Projects

Organizational Units

Journal Issue

Description

©2018 American Physical Society. The research of V.G. has been supported by the Spanish Government through Grant No. FIS2016-76359-P, partially financed by FEDER funds. The research of R.B. and R.S. has been supported by the Spanish Government, Grants No. FIS2014-52486-R and No. FIS2017-83709-R. R.S. has been supported by the Fondecyt Grant No. 1140778.

UCM subjects

Unesco subjects

Keywords

Collections