Semitoric systems of non-simple type

dc.contributor.authorPalmer, Joseph
dc.contributor.authorPelayo González, Álvaro
dc.contributor.authorTang, Xiudi
dc.date.accessioned2025-12-17T10:59:34Z
dc.date.available2025-12-17T10:59:34Z
dc.date.issued2024
dc.description.abstractWithin integrable systems, the class of so called “semitoric” integrable systems in dimension four has attracted a lot of attention in recent years, especially since fundamental examples from classical and quantum mechanics have been identified as semitoric by different groups of researchers. Several of these examples, however, show a particular trait not included in the original theory, that is, the presence of multiple (i.e. two or more) rank zero isolated singularities in the same energy-momentum level sets. Systems with this property are called non-simple. This paper extends the original theory of Pelayo and Vũ Ngọc to non-simple systems.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationPalmer, J., Pelayo, Á. & Tang, X. Semitoric systems of non-simple type. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 2024 Sept 24; 118 (4): 161.
dc.identifier.doi10.1007/s13398-024-01656-2
dc.identifier.issn1578-7303
dc.identifier.issn1579-1505
dc.identifier.officialurlhttps://link.springer.com/article/10.1007/s13398-024-01656-2#citeas
dc.identifier.urihttps://hdl.handle.net/20.500.14352/129214
dc.issue.number4
dc.journal.titleRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
dc.language.isoeng
dc.publisherSpringer
dc.rights.accessRightsopen access
dc.subject.keywordSymplectic geometry
dc.subject.keywordIntegrable systems
dc.subject.keywordSemitoric systems
dc.subject.keywordClassification
dc.subject.ucmGeometría diferencial
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleSemitoric systems of non-simple type
dc.typejournal article
dc.volume.number118
dspace.entity.typePublication
relation.isAuthorOfPublication55fa926c-63f1-441c-88ca-3bc17ec7996e
relation.isAuthorOfPublication.latestForDiscovery55fa926c-63f1-441c-88ca-3bc17ec7996e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RACSAM2024.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format

Collections