Ink of Insight: Data Augmentation for Dementia Screening through Handwriting Analysis
dc.conference.date | 17-19 May 2024 | |
dc.conference.place | Yokohama, Japón | |
dc.conference.title | ICMHI 2024: 2024 8th International Conference on Medical and Health Informatics | |
dc.contributor.author | Hosseini-Kivanani, Nina | |
dc.contributor.author | García Martín, Elena Salobrar | |
dc.contributor.author | Elvira Hurtado, Lorena | |
dc.contributor.author | López Cuenca, Inés | |
dc.contributor.author | Hoz Montañana, María Rosa De | |
dc.contributor.author | Ramírez Sebastián, José Manuel | |
dc.contributor.author | Gil Gregorio, Pedro | |
dc.contributor.author | Salas Carrillo, Mario | |
dc.contributor.author | Schommer, Christoph | |
dc.contributor.author | Leiva, Luis A. | |
dc.contributor.editor | Association for Computing Machinery | |
dc.date.accessioned | 2025-02-06T10:09:24Z | |
dc.date.available | 2025-02-06T10:09:24Z | |
dc.date.issued | 2024-05-17 | |
dc.description | Se incluye en: Proceedings of the 2024 8th International Conference on Medical and Health Informatics, publicados el 9 de septiembre de 2024 | |
dc.description.abstract | We investigate the use of handwriting data as a means of predicting early symptoms of Alzheimer's disease (AD). Thirty-six subjects were classified based on the standardized pentagon drawing test (PDT) using deep learning (DL) models. We also compare and contrast classic machine learning (ML) models with DL by employing different data augmentation (DA) techniques. Our findings indicate that DA greatly improves the performance of all models, but the DL-based ones are the ones that achieve the best and highest results. The best model (EfficientNet) achieved a classification accuracy of 87% and an area under the receiver operating characteristic curve (AUC) of 91% for binary classification (healthy or AD patients), whereas for multiclass classification (healthy, mild AD, or moderate AD) accuracy was 76% and AUC was 77%. These results underscore the potential of DA as a simple, cost-effective approach to aid practitioners in screening AD in larger populations, suggesting DL models are capable of analyzing handwriting data with a high degree of accuracy, which may lead to better and earlier detection of AD.tempate | |
dc.description.department | Unidad Docente de Inmunología, Oftalmología y ORL | |
dc.description.faculty | Fac. de Óptica y Optometría | |
dc.description.faculty | Instituto de Investigaciones Oftalmológicas Ramón Castroviejo | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.identifier.citation | Nina Hosseini-Kivanani, Elena Salobrar-Garcia, Lorena Elvira-Hurtado, Ines Lopez-Cuenca, Rosa de Hoz, Jose M. Ramirez, Pedro Gil, Mario Salas-Carrillo, Christoph Schommer, and Luis A. Leiva. 2024. Ink of Insight: Data Augmentation for Dementia Screening through Handwriting Analysis. In 2024 8th International Conference on Medical and Health Informatics (ICMHI 2024), May 17--19, 2024, Yokohama, Japan. ACM, New York, NY, USA 6 Pages. https://doi.org/10.1145/3673971.3673992 | |
dc.identifier.doi | 10.1145/3673971.3673992 | |
dc.identifier.isbn | 979-8-4007-1687-4/24/05 | |
dc.identifier.officialurl | https://doi.org/10.1145/3673971.3673992 | |
dc.identifier.relatedurl | https://dl.acm.org/doi/proceedings/10.1145/3673971 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/117870 | |
dc.language.iso | eng | |
dc.page.initial | 6 páginas | |
dc.rights | Attribution 4.0 International | en |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.cdu | 616.894-053.9 | |
dc.subject.cdu | 004.85 | |
dc.subject.keyword | Alzheimer's Disease | |
dc.subject.keyword | Pentagon Drawing Test | |
dc.subject.keyword | Data Augmentation | |
dc.subject.keyword | Image Classification | |
dc.subject.keyword | Machine Learning | |
dc.subject.keyword | Deep Learning | |
dc.subject.keyword | Screening | |
dc.subject.ucm | Neurociencias (Medicina) | |
dc.subject.ucm | Aprendizaje | |
dc.subject.ucm | Inteligencia artificial (Informática) | |
dc.subject.unesco | 1203.10 Enseñanza Con Ayuda de Ordenador | |
dc.subject.unesco | 2490 Neurociencias | |
dc.subject.unesco | 3207.11 Neuropatología | |
dc.subject.unesco | 1203.04 Inteligencia Artificial | |
dc.title | Ink of Insight: Data Augmentation for Dementia Screening through Handwriting Analysis | |
dc.type | conference paper | |
dc.type.hasVersion | VoR | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 554437df-fa3d-41e1-862c-bcdda1dbd67a | |
relation.isAuthorOfPublication | 6d91551a-f52f-4428-9fd9-4e840fb364b2 | |
relation.isAuthorOfPublication | ac6968ed-10bd-4b3b-9282-198ce87605f1 | |
relation.isAuthorOfPublication | 9ca5e7f7-b537-4b0d-a531-91dddf840ddd | |
relation.isAuthorOfPublication | 59b41e19-a468-4ccb-b3a5-f35742d186c4 | |
relation.isAuthorOfPublication.latestForDiscovery | 554437df-fa3d-41e1-862c-bcdda1dbd67a |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Ink_Insight_Dementia_Screening_2024.pdf
- Size:
- 623.19 KB
- Format:
- Adobe Portable Document Format