Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Ink of Insight: Data Augmentation for Dementia Screening through Handwriting Analysis

dc.conference.date17-19 May 2024
dc.conference.placeYokohama, Japón
dc.conference.titleICMHI 2024: 2024 8th International Conference on Medical and Health Informatics
dc.contributor.authorHosseini-Kivanani, Nina
dc.contributor.authorGarcía Martín, Elena Salobrar
dc.contributor.authorElvira Hurtado, Lorena
dc.contributor.authorLópez Cuenca, Inés
dc.contributor.authorHoz Montañana, María Rosa De
dc.contributor.authorRamírez Sebastián, José Manuel
dc.contributor.authorGil Gregorio, Pedro
dc.contributor.authorSalas Carrillo, Mario
dc.contributor.authorSchommer, Christoph
dc.contributor.authorLeiva, Luis A.
dc.contributor.editorAssociation for Computing Machinery
dc.date.accessioned2025-02-06T10:09:24Z
dc.date.available2025-02-06T10:09:24Z
dc.date.issued2024-05-17
dc.descriptionSe incluye en: Proceedings of the 2024 8th International Conference on Medical and Health Informatics, publicados el 9 de septiembre de 2024
dc.description.abstractWe investigate the use of handwriting data as a means of predicting early symptoms of Alzheimer's disease (AD). Thirty-six subjects were classified based on the standardized pentagon drawing test (PDT) using deep learning (DL) models. We also compare and contrast classic machine learning (ML) models with DL by employing different data augmentation (DA) techniques. Our findings indicate that DA greatly improves the performance of all models, but the DL-based ones are the ones that achieve the best and highest results. The best model (EfficientNet) achieved a classification accuracy of 87% and an area under the receiver operating characteristic curve (AUC) of 91% for binary classification (healthy or AD patients), whereas for multiclass classification (healthy, mild AD, or moderate AD) accuracy was 76% and AUC was 77%. These results underscore the potential of DA as a simple, cost-effective approach to aid practitioners in screening AD in larger populations, suggesting DL models are capable of analyzing handwriting data with a high degree of accuracy, which may lead to better and earlier detection of AD.tempate
dc.description.departmentUnidad Docente de Inmunología, Oftalmología y ORL
dc.description.facultyFac. de Óptica y Optometría
dc.description.facultyInstituto de Investigaciones Oftalmológicas Ramón Castroviejo
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationNina Hosseini-Kivanani, Elena Salobrar-Garcia, Lorena Elvira-Hurtado, Ines Lopez-Cuenca, Rosa de Hoz, Jose M. Ramirez, Pedro Gil, Mario Salas-Carrillo, Christoph Schommer, and Luis A. Leiva. 2024. Ink of Insight: Data Augmentation for Dementia Screening through Handwriting Analysis. In 2024 8th International Conference on Medical and Health Informatics (ICMHI 2024), May 17--19, 2024, Yokohama, Japan. ACM, New York, NY, USA 6 Pages. https://doi.org/10.1145/3673971.3673992
dc.identifier.doi10.1145/3673971.3673992
dc.identifier.isbn979-8-4007-1687-4/24/05
dc.identifier.officialurlhttps://doi.org/10.1145/3673971.3673992
dc.identifier.relatedurlhttps://dl.acm.org/doi/proceedings/10.1145/3673971
dc.identifier.urihttps://hdl.handle.net/20.500.14352/117870
dc.language.isoeng
dc.page.initial6 páginas
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu616.894-053.9
dc.subject.cdu004.85
dc.subject.keywordAlzheimer's Disease
dc.subject.keywordPentagon Drawing Test
dc.subject.keywordData Augmentation
dc.subject.keywordImage Classification
dc.subject.keywordMachine Learning
dc.subject.keywordDeep Learning
dc.subject.keywordScreening
dc.subject.ucmNeurociencias (Medicina)
dc.subject.ucmAprendizaje
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.10 Enseñanza Con Ayuda de Ordenador
dc.subject.unesco2490 Neurociencias
dc.subject.unesco3207.11 Neuropatología
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleInk of Insight: Data Augmentation for Dementia Screening through Handwriting Analysis
dc.typeconference paper
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublication554437df-fa3d-41e1-862c-bcdda1dbd67a
relation.isAuthorOfPublication6d91551a-f52f-4428-9fd9-4e840fb364b2
relation.isAuthorOfPublicationac6968ed-10bd-4b3b-9282-198ce87605f1
relation.isAuthorOfPublication9ca5e7f7-b537-4b0d-a531-91dddf840ddd
relation.isAuthorOfPublication59b41e19-a468-4ccb-b3a5-f35742d186c4
relation.isAuthorOfPublication.latestForDiscovery554437df-fa3d-41e1-862c-bcdda1dbd67a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ink_Insight_Dementia_Screening_2024.pdf
Size:
623.19 KB
Format:
Adobe Portable Document Format

Collections