Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Mathematical treatment of the discharge of a laminar hot gas in a stagnant colder atmosphere

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorAntontsev, S.N.
dc.date.accessioned2023-06-20T09:33:59Z
dc.date.available2023-06-20T09:33:59Z
dc.date.issued2008
dc.description.abstractWe study the boundary-layer approximation of the classical mathematical model that, describes the discharge of a, laminar hot gas in a stagnant colder atmosphere of the same gas. We prove the existence and uniqueness of solutions to a nondegenerate problem. (without, zones of stagnation of gas temperature or velocity). The asymptotic behavior of these solutions is also studied.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15198
dc.identifier.doi10.1007/s10808-008-0085-4
dc.identifier.issn0021-8944
dc.identifier.officialurlhttp://www.springerlink.com/content/a227t01x326535qt/fulltext.pdf
dc.identifier.relatedurlhttp://www.springerlink.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49920
dc.issue.number4
dc.journal.titleJournal of applied mechanics and technical physics
dc.language.isoeng
dc.page.final692
dc.page.initial681
dc.publisherSpringer
dc.rights.accessRightsrestricted access
dc.subject.cdu517.95
dc.subject.keyworddiffusion
dc.subject.keywordmodel
dc.subject.keywordheat
dc.subject.keywordsystems of nonlinear degenerate parabolic equations
dc.subject.keyworddiffusion coupling
dc.subject.keywordtemperature gas jets
dc.subject.keywordasymptotic behavior
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleMathematical treatment of the discharge of a laminar hot gas in a stagnant colder atmosphere
dc.typejournal article
dc.volume.number49
dcterms.referencesS. N. Antontsev and J. I. Díaz, “Mathematical analysis of the discharge of a laminar hot gas in a colder atmosphere,” in: Differential Equations and Related Topics, Book of Abstr. Int. Conf., Moscow State Univ., Moscow (2007), pp. 19–20. S. N. Antontsev and J. I. Díaz, “Mathematical analysis of the discharge of a laminar hot gas in a colder atmosphere,” Revista Real Acad. Cien. Exact., Ser. Appl. Math., 101, No. 1, 119–124 (2007). S. N. Antontsev and J. I. Díaz, “On thermal and stagnation interfaces generated by the discharge of a laminar hot gas in a stagnant colder atmosphere,” Prepiblications of the Departamento de Matematica Aplicada of the UCM (2008). S. Pai, Fluid Dynamics of Jets, D. Van Nostrand Comp., Inc., Toronto-New York-London (1954). S. Pai, “Two-dimensional jet mixing of a compressible fluid,” J. Aeronaut. Sci., 16, 463–469 (1949). S. Pai, “Axially symmetrical jet mixing of a compressible fluid,” Quart. Appl. Math., 10, 141–148 (1952). M. Sánchez-Sanz, A. Sánchez, and A. Liñán, “Front solutions in high-temperature laminar gas jets,” J. Fluid Mech., 547, 257–266 (2006). L. Chen and A. Jungel, “Analysis of a parabolic cross-diffusion population model without self-diffusion,” J. Differ. Eq., 224, No. 1, 39–59 (2006). L. Chen and A. Jungel, “Analysis of a parabolic cross-diffusion semiconductor model with electron-hole scattering,” Comm. Partial. Differ. Eq., 32, Nos. 1/3, 127–148 (2007). A. Hill, “Double-diffusive convection in a porous medium with a concentration based internal heat source,” Proc. Roy. Soc. London, Ser. A, 461, No. 2054, 561–574 (2005). R. Shepherd and R. J. Wiltshire, “An analytical approach to coupled heat and moisture transport in soil,” Transport Porous Media, 20, No. 3, 281–304 (1995). S. N. Antontsev, J. I. Díaz, and S. Shmarev, “Energy methods for free boundary problems: Applications to non-linear PDEs and fluid mechanics,” in: Progress in Nonlinear Differential Equations and Their Applications, Vol. 48, Birkhäuser Boston, Inc., Boston (2002). G. I. Barenblatt and M. I. Vishik, “On finite velocity of propagation of nonstationary filtration of a liquid or gas,” Prikl. Mat. Mekh., 20, 411–417 (1956). J. L. Vázquez, “An introduction to the mathematical theory of the porous medium equation,” in: Shape Optimization and Free Boundaries (Montreal, 1990), NATO Adv. Sci. Inst., Ser. C: Math. Phys. Sci., Vol. 380, Kluwer Acad. Publ., Dordrecht (1992), pp. 347–389. J. L. Vázquez, “Smoothing and decay estimates for nonlinear diffusion equations. Equations of porous medium type,” in: Lecture Series in Mathematics and Its Applications, Vol. 33, Oxford Univ. Press, Oxford (2006). J. L. Vázquez, The Porous Medium Equation. Mathematical Theory, Oxford Mathematical monographs, The Clarendon Press-Oxford Univ. Press, Oxford (2007). Y. B. Zeldovič and A. S. Kompaneec, “On the theory of propagation of heat with the heat conductivity depending upon the temperature,” in: Collection in Honor of the 70th Birthday of Acad. A. F. Yoffe [in Russian], Izdat. Akad. Nauk SSSR, Moscow (1950), pp. 61–71. O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasi-Linear Equations of Parabolic Type, Am. Math. Soc., Providence (1967); translated from Russian by S. Smith, Translations of Mathematical Monographs, Vol. 23. P. Bénilan and S. N. Kruzhkov, “Conservation laws with continuos flux function,” Nonlinear Differ. Eq. Appl., 3, No. 4, 395–419 (1996). S. N. Kruzhkov, “First-order quasilinear equations in several independent variables,” Mat. Sb., 81, No. 123, 228–255 (1970).
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
28.pdf
Size:
179.31 KB
Format:
Adobe Portable Document Format

Collections