Homogeneous quaternionic Kähler structures on eight-dimensional non-compact quaternion-Kähler symmetric spaces
dc.contributor.author | Castrillón López, Marco | |
dc.contributor.author | Martínez Gadea, Pedro | |
dc.contributor.author | Oubiña, J. A. | |
dc.date.accessioned | 2023-06-20T10:35:58Z | |
dc.date.available | 2023-06-20T10:35:58Z | |
dc.date.issued | 2009 | |
dc.description.abstract | For each non-compact quaternion-Kähler symmetric space of dimension 8, all of its descriptions as a homogeneous Riemannian space (obtained through the Witte’s refined Langlands decomposition) and the associated homogeneous quaternionic Kähler structures are studied. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Dgicyt | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/21953 | |
dc.identifier.doi | 10.1007/s11040-008-9051-x | |
dc.identifier.issn | 1385-0172 | |
dc.identifier.officialurl | http://digital.csic.es/bitstream/10261/15791/1/MathPAG_CGO.PDF | |
dc.identifier.relatedurl | http://link.springer.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50718 | |
dc.issue.number | 1 | |
dc.journal.title | Mathematical Physics, Analysis and Geometry | |
dc.language.iso | eng | |
dc.page.final | 74 | |
dc.page.initial | 47 | |
dc.publisher | Springer Verlag | |
dc.relation.projectID | mtm2005-00173. | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 515.16 | |
dc.subject.keyword | non-compact quaternion-Kähler symmetric spaces | |
dc.subject.keyword | homogeneous Riemannian structures | |
dc.subject.keyword | homogeneous quaternionic Kähler structures | |
dc.subject.keyword | parabolic subgroups | |
dc.subject.keyword | refined Langlands decomposition. | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Homogeneous quaternionic Kähler structures on eight-dimensional non-compact quaternion-Kähler symmetric spaces | |
dc.type | journal article | |
dc.volume.number | 12 | |
dcterms.references | D. V. Alekseevskiï, Classification of quaternionic spaces with a transitive solvable group of motions, Math. USSR Izvestija 9 (1975), 297–339. D. V. Alekseevsky and V. Cortés, Homogeneous quaternionic Kähler manifolds of unimodular groups, Boll. Un. Mat. Ital. B (7) 11 (1997), no. 2, suppl., 217–229. W. Ambrose and I. M. Singer, On homogeneous Riemannian manifolds, Duke Math. J. 25 (1958), 647–669. J. Bagger and W. Witten, Matter couplings in N = 2 supergravity, Nucl. Phys. B 222 (1983), 1–10. M. Castrillón López, P. M. Gadea, and J. A. Oubiña, Homogeneous quaternionic Kähler structures on 12-dimensional Alekseevsky spaces, J. Geom. Phys. 57 (2007), doi:10.1016/j.geomphys.2007.05.007.21 M. Castrillón López, P. M. Gadea, and A. F. Swann, Homogeneous quaternionic Kähler structures and quaternionic hyperbolic space, Transform. Groups 11 (2006), 575–608. S. Cecotti, Homogeneous Kähler manifolds and T-algebras in N = 2 supergravity and superstrings, Comm. Math. Phys. 124 (1989), 23–55. V. Cortés, Alekseevskian spaces, Diff. Geom. Appl. 6 (1996), 129–168. A. Fino, Intrinsic torsion and weak holonomy, Math. J. Toyama Univ. 21 (1998),1–22. P. Fré, F. Gargiulo, J. Rosseel, K. Rulik, M. Trigiante, and A. Van Proeyen, Tits-Satake projections of homogeneous special geometries, Classical Quantum Gravity 24 (2007), 27–78. P. M. Gadea and J. A. Oubiña, Reductive homogeneous pseudo-Riemannian manifolds,Monatsh. Math. 124 (1997), 17–34. C. S. Gordon and E. N. Wilson, Isometry groups of Riemannian solvmanifolds, Trans. Amer. Math. Soc. 307 (1988), 245–269. J. Heber, Noncompact homogeneous Einstein spaces, Invent. Math. 133 (1998),279–352. V. F. Kiricenko, On homogeneous Riemannian spaces with an invariant structure tensor, Dokl. Akad. Nauk SSSR 252 (1980), 291–293. S. Kobayashi and K. Nomizu, Foundations of differential geometry. Volume II, Tracts in Mathematics, Number 15, Wiley, New York, 1969. P. Meessen, Homogeneous Lorentzian spaces admitting a homogeneous structure of type T1 T3, J. Geom. Phys. 56 (2006), 754–761. A.Montesinos Amilibia, Degenerate homogeneous structures of type S1 on pseudo-Riemannian manifolds, Rocky Mountain J. Math. 31 (2001), 561–579. F. Tricerri and L. Vanhecke, Homogeneous structures on Riemannian Manifolds,London Math. Soc. Lect. Notes Ser. 83, Cambridge Univ. Press, Cambridge,U.K., 1983. B. de Wit and A. Van Proeyen, Special geometry, cubic polynomials and homogeneous quaternionic spaces, Comm. Math. Phys. 149 (1992), 307–333. D. Witte Morris, Cocompact subgroups of semisimple Lie groups, Lie algebras and related topics, Proc. Res. Conf., Madison, WI, 1988, Contemp. Math. 110 (1990),309–313. J. A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech. 14 (1965), 1033–1047. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 32e59067-ef83-4ca6-8435-cd0721eb706b | |
relation.isAuthorOfPublication.latestForDiscovery | 32e59067-ef83-4ca6-8435-cd0721eb706b |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- castrillon-Homogeneous.pdf
- Size:
- 295.76 KB
- Format:
- Adobe Portable Document Format