Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Homogeneous quaternionic Kähler structures on eight-dimensional non-compact quaternion-Kähler symmetric spaces

dc.contributor.authorCastrillón López, Marco
dc.contributor.authorMartínez Gadea, Pedro
dc.contributor.authorOubiña, J. A.
dc.date.accessioned2023-06-20T10:35:58Z
dc.date.available2023-06-20T10:35:58Z
dc.date.issued2009
dc.description.abstractFor each non-compact quaternion-Kähler symmetric space of dimension 8, all of its descriptions as a homogeneous Riemannian space (obtained through the Witte’s refined Langlands decomposition) and the associated homogeneous quaternionic Kähler structures are studied.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipDgicyt
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21953
dc.identifier.doi10.1007/s11040-008-9051-x
dc.identifier.issn1385-0172
dc.identifier.officialurlhttp://digital.csic.es/bitstream/10261/15791/1/MathPAG_CGO.PDF
dc.identifier.relatedurlhttp://link.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50718
dc.issue.number1
dc.journal.titleMathematical Physics, Analysis and Geometry
dc.language.isoeng
dc.page.final74
dc.page.initial47
dc.publisherSpringer Verlag
dc.relation.projectIDmtm2005-00173.
dc.rights.accessRightsopen access
dc.subject.cdu515.16
dc.subject.keywordnon-compact quaternion-Kähler symmetric spaces
dc.subject.keywordhomogeneous Riemannian structures
dc.subject.keywordhomogeneous quaternionic Kähler structures
dc.subject.keywordparabolic subgroups
dc.subject.keywordrefined Langlands decomposition.
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleHomogeneous quaternionic Kähler structures on eight-dimensional non-compact quaternion-Kähler symmetric spaces
dc.typejournal article
dc.volume.number12
dcterms.referencesD. V. Alekseevskiï, Classification of quaternionic spaces with a transitive solvable group of motions, Math. USSR Izvestija 9 (1975), 297–339. D. V. Alekseevsky and V. Cortés, Homogeneous quaternionic Kähler manifolds of unimodular groups, Boll. Un. Mat. Ital. B (7) 11 (1997), no. 2, suppl., 217–229. W. Ambrose and I. M. Singer, On homogeneous Riemannian manifolds, Duke Math. J. 25 (1958), 647–669. J. Bagger and W. Witten, Matter couplings in N = 2 supergravity, Nucl. Phys. B 222 (1983), 1–10. M. Castrillón López, P. M. Gadea, and J. A. Oubiña, Homogeneous quaternionic Kähler structures on 12-dimensional Alekseevsky spaces, J. Geom. Phys. 57 (2007), doi:10.1016/j.geomphys.2007.05.007.21 M. Castrillón López, P. M. Gadea, and A. F. Swann, Homogeneous quaternionic Kähler structures and quaternionic hyperbolic space, Transform. Groups 11 (2006), 575–608. S. Cecotti, Homogeneous Kähler manifolds and T-algebras in N = 2 supergravity and superstrings, Comm. Math. Phys. 124 (1989), 23–55. V. Cortés, Alekseevskian spaces, Diff. Geom. Appl. 6 (1996), 129–168. A. Fino, Intrinsic torsion and weak holonomy, Math. J. Toyama Univ. 21 (1998),1–22. P. Fré, F. Gargiulo, J. Rosseel, K. Rulik, M. Trigiante, and A. Van Proeyen, Tits-Satake projections of homogeneous special geometries, Classical Quantum Gravity 24 (2007), 27–78. P. M. Gadea and J. A. Oubiña, Reductive homogeneous pseudo-Riemannian manifolds,Monatsh. Math. 124 (1997), 17–34. C. S. Gordon and E. N. Wilson, Isometry groups of Riemannian solvmanifolds, Trans. Amer. Math. Soc. 307 (1988), 245–269. J. Heber, Noncompact homogeneous Einstein spaces, Invent. Math. 133 (1998),279–352. V. F. Kiricenko, On homogeneous Riemannian spaces with an invariant structure tensor, Dokl. Akad. Nauk SSSR 252 (1980), 291–293. S. Kobayashi and K. Nomizu, Foundations of differential geometry. Volume II, Tracts in Mathematics, Number 15, Wiley, New York, 1969. P. Meessen, Homogeneous Lorentzian spaces admitting a homogeneous structure of type T1 T3, J. Geom. Phys. 56 (2006), 754–761. A.Montesinos Amilibia, Degenerate homogeneous structures of type S1 on pseudo-Riemannian manifolds, Rocky Mountain J. Math. 31 (2001), 561–579. F. Tricerri and L. Vanhecke, Homogeneous structures on Riemannian Manifolds,London Math. Soc. Lect. Notes Ser. 83, Cambridge Univ. Press, Cambridge,U.K., 1983. B. de Wit and A. Van Proeyen, Special geometry, cubic polynomials and homogeneous quaternionic spaces, Comm. Math. Phys. 149 (1992), 307–333. D. Witte Morris, Cocompact subgroups of semisimple Lie groups, Lie algebras and related topics, Proc. Res. Conf., Madison, WI, 1988, Contemp. Math. 110 (1990),309–313. J. A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech. 14 (1965), 1033–1047.
dspace.entity.typePublication
relation.isAuthorOfPublication32e59067-ef83-4ca6-8435-cd0721eb706b
relation.isAuthorOfPublication.latestForDiscovery32e59067-ef83-4ca6-8435-cd0721eb706b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
castrillon-Homogeneous.pdf
Size:
295.76 KB
Format:
Adobe Portable Document Format

Collections