Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Uncountably many wild knots whose cyclic branched covering are S3

dc.contributor.authorMontesinos Amilibia, José María
dc.date.accessioned2023-06-20T18:48:09Z
dc.date.available2023-06-20T18:48:09Z
dc.date.issued2003
dc.descriptionDedicado a Francisco González Acuña en su sexagésimo cumpleaños
dc.description.abstractAccording to the confirmed Smith Conjecture [The Smith conjecture (New York, 1979), Academic Press, Orlando, FL, 1984;], a tame knot in the 3-sphere has a cyclic branched covering that is also the 3-sphere only if it is trivial. Here the author produces a nontrivial, wild knot whose n-fold cyclic branched cover is S3, for all n. In fact there are uncountably many inequivalent knots with this property, and the knots can be chosen to bound an embedded disk that is tame in its interior. One might conjecture that any wild knot whose nontrivial n-fold cyclic branched cover is S3 must bound such a disk that is tame in its interior.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22293
dc.identifier.issn1139-1138
dc.identifier.officialurlhttp://www.mat.ucm.es/serv/revmat/vol16-1j.html
dc.identifier.relatedurlhttp://www.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58660
dc.issue.number1
dc.journal.titleRevista matemática complutense
dc.language.isoeng
dc.page.final344
dc.page.initial329
dc.publisherSpringer
dc.rights.accessRightsrestricted access
dc.subject.cdu515.162
dc.subject.keyworddecomposition
dc.subject.keywordwild knot
dc.subject.keywordbranched covering
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleUncountably many wild knots whose cyclic branched covering are S3
dc.typejournal article
dc.volume.number16
dcterms.referencesArmentrout, S. Monotone decompositions of E3, Ann. Math. Stud. 60, 1–25 (1966). Armentrout, Steve; Lininger, Lloyd L.; Meyer, Donald V. Equivalent decompositions of E3, Ann. Math. Stud. 60, 27–31 (1966). Bing, R. H. A homeomorphism between the 3-sphere and the sum of two solid horned spheres. Ann. of Math. (2) 56 (1952) 354–362. Bing, R.H. Inequivalent families of periodic homeomorphisms of E3, Ann. Math. (2) 80, 78–93 (1964). Bing, R.H. The collected papers of R. H. Bing. Vol. 1 and 2. Ed. by Sukhjit Singh, Steve Armentrout and Robert J. Daverman, Providence, RI: American Mathematical Society, xix, 1654 p. (1988). MSC 2000. Blankinship, W.A.; Fox, R.H. Remarks on certain pathological open subsets of 3-space and their fundamental groups. Proc. Am. Math. Soc. 1, 618–624 (1950). Daverman, Robert J. Decompositions of manifolds. Pure and Applied Mathematics, 124. Orlando etc.: Academic Press, Inc., Harcourt Brace Jovanovich, Publishers. XI, 317 p. Fox, Ralph H. Covering spaces with singularities. 1957 A symposium in honor of S. Lefschetz pp. 243–257 Princeton University Press, Princeton, N.J. Freudenthal, H. Über die Enden diskreter Räume und Gruppen. Comment. Math. Helv. 17 (1945)1–38. Lloyd, N. G. Degree theory. Cambridge Tracts in Mathematics, No. 73. Cambridge University Press, Cambridge-New York-Melbourne, 1978. vi+172 pp. ISBN: 0-521-21614-1 Montesinos-Amilibia, J.M. Open 3-manifolds as 3-fold branched coverings. Rev.R. Acad.Cien.SerieA.Mat. 95(2001)1–3. Montgomery, D.; Zippin, L. Examples of transformation groups. Proc. Amer. Math. Soc. 5 (1954) 460–465. Sher, R.B. Concerning wild Cantor sets in E3, Proc. Am. Math. Soc. 19, 1195–1200 (1968).
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
montesinos65.pdf
Size:
279.79 KB
Format:
Adobe Portable Document Format

Collections