Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Musif: a Python package for symbolic music feature extraction

dc.book.titleProceedings of the 20th Sound and Music Computing Conference. June 15-17, 2023. Stockholm, Sweden
dc.conference.dateJune 15-17, 2023
dc.conference.placeStockholm, Sweden
dc.contributor.authorLlorens, Ana
dc.contributor.authorLlorens Martín, Ana
dc.contributor.authorSimonetta, Federico
dc.contributor.authorSerrano, Martín
dc.contributor.authorTorrente, Álvaro
dc.contributor.authorTorrente Sánchez-Guisande, Álvaro José
dc.contributor.editorBresin, R.
dc.contributor.editorFalkenberg, K.
dc.date.accessioned2025-01-13T18:47:26Z
dc.date.available2025-01-13T18:47:26Z
dc.date.issued2023-11-01
dc.description.abstractIn this work, we introduce musif, a Python package that facilitates the automatic extraction of features from symbolic music scores. The package includes the implementation of a large number of features, which have been developed by a team of experts in musicology, music theory, statistics, and computer science. Additionally, the package allows for the easy creation of custom features using commonly available Python libraries. musif is primarily geared towards processing high-quality musicological data encoded in MusicXML format, but also supports other formats commonly used in music information retrieval tasks, including MIDI, MEI, Kern, and others. We provide comprehensive documentation and tutorials to aid in the extension of the framework and to facilitate the introduction of new and inexperienced users to its usage.
dc.description.departmentDepto. de Musicología
dc.description.facultyFac. de Geografía e Historia
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Research Council
dc.description.statuspub
dc.identifier.citationLlorens A, Simonetta F, Serrano, M, Torrente, Á. musif: a Python package for symbolic music feature extraction. In Proceedings of the 20th Sound and Music Computing Conference. June 15-17, 2023. Stockholm, Sweden. 2023: 132–9.
dc.identifier.officialurlhttps://smcnetwork.org/smc2023/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/114077
dc.language.isoeng
dc.page.final138
dc.page.initial132
dc.page.total7
dc.relation.projectIDDidone: The Sources of Absolute Music (Advanced Grant NO. 788976)
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu781.2
dc.subject.keywordcomputational musicology
dc.subject.keywordmusic information retrieval
dc.subject.keywordPython
dc.subject.ucmMúsica
dc.subject.ucmProgramación de ordenadores (Informática)
dc.subject.unesco6203.06 Música, Musicología
dc.subject.unesco1203.17 Informática
dc.titleMusif: a Python package for symbolic music feature extraction
dc.typebook part
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublication08ceb7d9-40b9-4249-bafc-81c973dd36fb
relation.isAuthorOfPublicationbbb0db02-00f7-4f13-afd6-ef648eec77e6
relation.isAuthorOfPublication.latestForDiscovery08ceb7d9-40b9-4249-bafc-81c973dd36fb

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2023_SMC_proceedings.pdf
Size:
178.01 MB
Format:
Adobe Portable Document Format