Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Effects of bottom boundary placement on subsurface heat storage: Implications for climate model simulations

dc.contributor.authorStevens, M. Bruce
dc.contributor.authorSmerdon, Jason E.
dc.contributor.authorGonzález Rouco, Jesús Fidel
dc.contributor.authorStieglitz, Marc
dc.contributor.authorBeltrami, Hugo
dc.date.accessioned2023-06-20T11:12:24Z
dc.date.available2023-06-20T11:12:24Z
dc.date.issued2007-01-18
dc.descriptionCopyright 2007 by the American Geophysical Union. This research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Atlantic Innovation Fund (AIF-ACOA), project CGL2005-06097 of the Spanish MEC, NSF grants from the Office of Polar Programs (OPP- 0436118), the division of Environmental Biology (Arctic LTER Project), a Biocomplexity Award (ATM-0439620), and by NASA’s Global Modeling and Analysis Program RTOP 622-24-47. J. E. Smerdon was supported by a Lamont-Doherty Postdoctoral Fellowship and by CICAR grant NA03OAR4320179 P 20A. JFGR was supported by a Ramón y Cajal contract.
dc.description.abstract[1] A one-dimensional soil model is used to estimate the influence of the position of the bottom boundary condition on heat storage calculations in land-surface components of General Circulation Models (GCMs). It is shown that shallow boundary conditions reduce the capacity of the global continental subsurface to store heat by as much as 1.0 x 10^23 Joules during a 110-year simulation with a 10 m bottom boundary. The calculations are relevant for GCM projections that employ land-surface components with shallow bottom boundary conditions, typically ranging between 3 to 10 m. These shallow boundary conditions preclude a large amount of heat from being stored in the terrestrial subsurface, possibly allocating heat to other parts of the simulated climate system. The results show that climate models of any complexity should consider the potential for subsurface heat storage whenever choosing a bottom boundary condition in simulations of future climate change.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada (NSERC)
dc.description.sponsorshipAtlantic Innovation Fund (AIF-ACOA)
dc.description.sponsorshipMinisterio de Educación y Ciencia (MEC), España
dc.description.sponsorshipOffice of Polar Programs (NFS)
dc.description.sponsorshipEnvironmental Biology
dc.description.sponsorshipBiocomplexity Award
dc.description.sponsorshipNASA’s Global Modeling and Analysis Program
dc.description.sponsorshipLamont-Doherty Postdoctoral Fellowship
dc.description.sponsorshipCICAR grant
dc.description.sponsorshipPrograma Ramón y Cajal (MEC)
dc.description.sponsorshipNational Science Foundation (NFS)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/36532
dc.identifier.doi10.1029/2006GL028546
dc.identifier.issn0094-8276
dc.identifier.officialurlhttp://dx.doi.org/10.1029/2006GL028546
dc.identifier.relatedurlhttp://onlinelibrary.wiley.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51828
dc.issue.number2
dc.journal.titleGeophysical research letters
dc.language.isoeng
dc.publisherAmerican Geophysical Union
dc.relation.projectIDCGL2005-06097
dc.relation.projectIDOPP- 0436118
dc.relation.projectIDATM-0439620
dc.relation.projectIDRTOP 622-24-47
dc.relation.projectIDNA03OAR4320179 P 20A
dc.rights.accessRightsopen access
dc.subject.cdu52
dc.subject.keywordGround thermal regime
dc.subject.keywordLast 1000 years
dc.subject.keywordSnow cover
dc.subject.keywordAir-temperature
dc.subject.keywordSoil
dc.subject.keywordLand
dc.subject.keywordAtmosphere
dc.subject.keywordScales
dc.subject.ucmAstrofísica
dc.subject.ucmAstronomía (Física)
dc.titleEffects of bottom boundary placement on subsurface heat storage: Implications for climate model simulations
dc.typejournal article
dc.volume.number34
dcterms.referencesBeltrami, H. (2002), Climate from borehole data: Energy fluxes and temperatures since 1500, Geophys. Res. Lett., 29(23), 2111, doi:10.1029/2002GL015702. Beltrami, H., J. E. Smerdon, H. N. Pollack, and S. Huang (2002), Continental heat gain in the global climate system, Geophys. Res. Lett., 29(8), 1167, doi:10.1029/2001GL014310. Beltrami, H., E. Bourlon, L. Kellman, and J. F. González Rouco (2006a), Spatial patterns of ground heat gain in the Northern Hemisphere, Geophys. Res. Lett., 33, L06717, doi:10.1029/2006GL025676. Beltrami, H., J. F. González Rouco, and M. B. Stevens (2006b), Subsurface temperatures during the last millennium: Model and observation, Geophys. Res. Lett., 33, L09705, doi:10.1029/2006GL026050. Crowley, T. J. (2000), Causes of climate change over the past 1000 years, Science, 289, 270 – 277. DeGaetano, A. T., D. Wilks, and M. McKay (1996), A physically based model of soil freezing in humid climates using air temperature and snow cover, J. Appl. Meteorol., 35, 1009 – 1027. Fischer-Bruns, I., H. von Storch, J. F. González Rouco, and E. Zorita (2005), A modelling study on the variability of global storm activity on timescales of decades and centuries, Clim. Dyn., 25, 461 – 476. González Rouco, J. F., H. von Storch, and E. Zorita (2003), Deep soil temperature as proxy for surface air-temperature in a coupled model simulation of the last thousand years, Geophys. Res. Lett., 30(21), 2116, doi:10.1029/2003GL018264. González Rouco, J. F., H. Beltrami, E. Zorita, and H. von Storch (2006), Simulation and inversion of borehole temperature profiles in simulated climates: Spatial distribution and surface coupling, Geophys. Res. Lett., 33, L01703, doi:10.1029/2005GL024693. Goodrich, L. E. (1982), The influence of snow cover on the ground thermal regime, Can. Geotech. J., 19, 421 – 432. Hansen, J., et al. (2005), Earth’s energy imbalance: Confirmation and implications, Science, 308, 1431 – 1435. Henderson-Sellers, A., and L. Hopkins (1998), Guest editorial, Global Planet. Change, 19, 1. Huang, S. (2006), 1851 – 2004 annual heat budget of the continental landmasses, Geophys. Res. Lett., 33, L04707, doi:10.1029/2005GL025300. Intergovernmental Panel on Climate Change (2001), Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton et al., 881 pp., Cambridge Univ. Press, New York. Knorr, W., I. C. Prentice, J. I. House, and E. A. Holland (2005), Long-term sensitivity of soil carbon turnover to warming, Nature, 433, 298 – 301. Koster, R. D., and M. J. Suarez (1992), Modeling the land surface boundary in climate models as a composite of independent vegetation stands, J. Geophys. Res., 97, 2697 – 2715. Legutke, S., and R. Voss (1999), The Hamburg atmosphere-ocean coupled circulation model ECHO-g, Tech. Rep., 18, German Clim. Comput. Cent. (DKRZ), Hamburg. Levitus, S., J. Antonov, and T. Boyer (2005), Warming of the world ocean, 1955 – 2003, Geophys. Res. Lett., 32, L02604, doi:10.1029/2004GL021592. Lynch-Stieglitz, M. (1994), The development and validation of a simple snow model for the GISS GCM, J. Clim., 7, 1842 – 1855. Roeckner, E., K. Arpe, L. Bengtsson, M. Christoph, M. Claussen, L. Dumenil, M. Esch, M. Giorgetta, U. Schlese, and U. Schulzweida (1996), The atmospheric general circulation model ECHAM4: Model description and simulation of present-day climate, Rep. 218, 99 pp., Max-Planck-Inst. fuer Meterol., Hamburg, Germany. Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär (2006), Landatmosphere coupling and climate change in Europe, Nature, 443, 205 – 209, doi:10.1038/nature05095. Shin, H.-J., I.-U. Chung, H.-J. Kim, and J.-W. Kim (2006), Global energy cycle between land and ocean in the simulated 20th century climate systems, Geophys. Res. Lett., 33, L14702, doi:10.1029/2006GL025977. Smerdon, J. E., and M. Stieglitz (2006), Simulation of heat transport in the Earth’s shallow subsurface: Lower-boundary sensitivities, Geophys. Res. Lett., 33, L14402, doi:10.1029/2006GL026816. Smerdon, J. E., H. N. Pollack, J. W. Enz, and M. J. Lewis (2003), Conduction-dominated heat transport of the annual temperature signal in soil, J. Geophys. Res., 108(B9), 2431, doi:10.1029/2002JB002351. Stieglitz, M., A. Ducharne, R. D. Koster, and M. J. Suárez (2001), The impact of detailed snow physics on the simulation of snowcover and subsurface thermodynamics at continental scales, J. Hydrometeorol., 2, 228 – 242. Sun, S., and X. Zhang (2004), Effect of the lower boundary position of the Fourier equation on the soil energy balance, Adv. Atmos. Sci., 14, 868 – 878. Warrilow, D. A., A. B. Sangster, and A. Slingo (1986), Modelling of land surface processes and their influence on European climate, Tech. Note 20 DCTN 38, Met. Off., Bracknell, U.K. Wolff, J. O., E. Meier-Reimer, and S. Legutke (1997), The Hamburg ocean primitive equation model, DKRZ 13, 98 pp., German Clim. Comput. Cent., Hamburg, Germany. Zhang, T., T. E. Osterkamp, and K. Stamnes (1996), Influence of the depth hoar layer of the seasonal snow cover on the ground thermal regime, Water Resour. Res., 32(7), 2075 – 2086. Zorita, E., J. F. González Rouco, H. von Storch, J. P. Montávez, and F. Valero (2005), Natural and anthropogenic modes of surface temperature variations in the last thousand years, Geophys. Res. Lett., 32, L08707, doi:10.1029/2004GL021563.
dspace.entity.typePublication
relation.isAuthorOfPublicationb0dda0f2-5a69-45d6-8aec-ccc99f2dc468
relation.isAuthorOfPublication.latestForDiscoveryb0dda0f2-5a69-45d6-8aec-ccc99f2dc468

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gonzalezrouco35libre.pdf
Size:
236.27 KB
Format:
Adobe Portable Document Format

Collections