Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Convergence of the Eckmann and Ruelle algorithm for the estimation of Liapunov exponents

dc.contributor.authorMera Rivas, María Eugenia
dc.contributor.authorMorán Cabré, Manuel
dc.date.accessioned2023-06-20T20:33:04Z
dc.date.available2023-06-20T20:33:04Z
dc.date.issued2000
dc.description.abstractWe analyze the convergence conditions of the Eckmann and Ruelle algorithm (E.R.A. for the sequel) used to estimate the Liapunov exponents, for the tangent map, of an ergodic measure, invariant under a smooth dynamical system. We find sufficient conditions for this convergence which are related to those ensuring the convergence to the tangent map of the best linear L^{p}-fittings of the action of a mapping f on small balls. Under such conditions, we show how to use E.R.A. to obtain estimates of the Liapunov exponents, up to an arbitrary degree of accuracy. We propose an adaptation of E.R.A. for the computation of Liapunov exponents in smooth manifolds which allows us to avoid the problem of detecting the spurious exponents. We prove, for a Borel measurable dynamics f, the existence of Liapunov exponents for the function Sr(x), mapping each point x to the matrix of the best linear Lp-fitting of the action of f on the closed ball of radius r centered at x, and we show how to use E.R.A. to get reliable estimates of the Liapunov exponents of Sr. We also propose a test for checking the differentiability of an empirically observed dynamics.
dc.description.departmentDepto. de Análisis Económico y Economía Cuantitativa
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/58882
dc.identifier.issn0143-3857
dc.identifier.officialurlhttps://doi.org/10.1017/S0143385700000262
dc.identifier.urihttps://hdl.handle.net/20.500.14352/60447
dc.issue.number2
dc.journal.titleErgodic Theory and Dynamical Systems
dc.language.isoeng
dc.page.final546
dc.page.initial531
dc.publisherCambridge University Press
dc.rights.accessRightsopen access
dc.subject.keywordLiapunov exponents
dc.subject.keywordEckmann and Ruelle algorithm
dc.subject.keywordBest L^{p}-linear estimate
dc.subject.keywordNonlinear dynamics
dc.subject.keywordInvariant and ergodic measures.
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.unesco12 Matemáticas
dc.titleConvergence of the Eckmann and Ruelle algorithm for the estimation of Liapunov exponents
dc.typejournal article
dc.volume.number20
dspace.entity.typePublication
relation.isAuthorOfPublication71245121-5334-43ae-92e3-eb84a42790e8
relation.isAuthorOfPublication36e295dc-70b7-4ede-868c-a83357a04413
relation.isAuthorOfPublication.latestForDiscovery36e295dc-70b7-4ede-868c-a83357a04413

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mera-moran(ergodictheory).pdf
Size:
209.98 KB
Format:
Adobe Portable Document Format

Collections