Beyond ω-regular languages: ωT-regular expressions and their automata and logic counterparts

dc.contributor.authorBarozzini, David
dc.contributor.authorFrutos Escrig, David De
dc.contributor.authorDella Monica, Dario
dc.contributor.authorMontanari, Angelo
dc.contributor.authorSala, Pietro
dc.date.accessioned2023-06-17T08:57:43Z
dc.date.available2023-06-17T08:57:43Z
dc.date.issued2020
dc.description"This is a pre-print of an article published in Theoretical Computer Science. The final authenticated version is available online at: https://doi.org/10.1016/j.tcs.2019.12.029”.
dc.description.abstractIn the last years, some extensions of ω-regular languages, namely, ωB-regular (ω-regular languages extended with boundedness), ωS-regular (ω-regular languages extended with strong unboundedness), and ωBS-regular languages (the combination of ωB- and ωS-regular ones), have been proposed in the literature. While the first two classes satisfy a generalized closure property, which states that the complement of an ωB-regular (resp., ωS-regular) language is an ωS-regular (resp., ωB-regular) one, the last class is not closed under complementation. The existence of non-ωBS-regular languages that are the complements of some ωBS-regular ones and express fairly natural asymptotic behaviors motivates the search for other significant classes of extended ω-regular languages. In this paper, we present the class of ωT-regular languages, which includes meaningful languages that are not ωBS-regular. We define this new class of languages in terms of ωT-regular expressions. Then, we introduce a new class of automata (counter-check automata) and we prove that (i) their emptiness problem is decidable in PTIME, and (ii) they are expressive enough to capture ωT-regular languages. We also provide an encoding of ωT-regular expressions into S1S+U. Finally, we investigate a stronger variant of ωT-regular languages (-regular languages). We characterize the resulting class of languages in terms of -regular expressions, and we show how to map it into a suitable class of automata, called counter-queue automata. We conclude the paper with a comparison of the expressiveness of ωT- and -regular languages and of the corresponding automata.en
dc.description.departmentSección Deptal. de Sistemas Informáticos y Computación
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipIstituto Nazionale di Alta Matematica (Italia)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/63689
dc.identifier.citationBarozzini, D., Frutos Escrig, D., Della Monica, D. et al. «Beyond ω-Regular Languages: ωT-Regular Expressions and Their Automata and Logic Counterparts». Theoretical Computer Science, vol. 813, abril de 2020, pp. 270-304. DOI.org (Crossref), https://doi.org/10.1016/j.tcs.2019.12.029.
dc.identifier.doi10.1016/j.tcs.2019.12.029
dc.identifier.issn0304-3975
dc.identifier.officialurlhttps://doi.org/10.1016/j.tcs.2019.12.029
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0304397519308114
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7725
dc.journal.titleTheoretical Computer Science
dc.language.isoeng
dc.page.final304
dc.page.initial270
dc.publisherElsevier
dc.relation.projectIDMarie Curie INdAM-COFUND-2012 Outgoing Fellowship
dc.relation.projectIDFormal methods for the verification and synthesis of discrete and hybrid systems.
dc.rights.accessRightsopen access
dc.subject.cdu510.6
dc.subject.keywordω-regular languages
dc.subject.keywordω-regular expressions
dc.subject.keywordCounter automata
dc.subject.keywordMonadic second-order logic of one successor
dc.subject.ucmInformática (Informática)
dc.subject.ucmLógica simbólica y matemática (Matemáticas)
dc.subject.unesco1203.17 Informática
dc.subject.unesco1102.14 Lógica Simbólica
dc.titleBeyond ω-regular languages: ωT-regular expressions and their automata and logic counterpartsen
dc.typejournal article
dc.volume.number813
dspace.entity.typePublication
relation.isAuthorOfPublicationfc861853-ad02-4152-b8b0-e0a8df6080dc
relation.isAuthorOfPublication.latestForDiscoveryfc861853-ad02-4152-b8b0-e0a8df6080dc

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tcs20.pdf
Size:
976.54 KB
Format:
Adobe Portable Document Format

Collections