Beyond ω-regular languages: ωT-regular expressions and their automata and logic counterparts
| dc.contributor.author | Barozzini, David | |
| dc.contributor.author | Frutos Escrig, David De | |
| dc.contributor.author | Della Monica, Dario | |
| dc.contributor.author | Montanari, Angelo | |
| dc.contributor.author | Sala, Pietro | |
| dc.date.accessioned | 2023-06-17T08:57:43Z | |
| dc.date.available | 2023-06-17T08:57:43Z | |
| dc.date.issued | 2020 | |
| dc.description | "This is a pre-print of an article published in Theoretical Computer Science. The final authenticated version is available online at: https://doi.org/10.1016/j.tcs.2019.12.029”. | |
| dc.description.abstract | In the last years, some extensions of ω-regular languages, namely, ωB-regular (ω-regular languages extended with boundedness), ωS-regular (ω-regular languages extended with strong unboundedness), and ωBS-regular languages (the combination of ωB- and ωS-regular ones), have been proposed in the literature. While the first two classes satisfy a generalized closure property, which states that the complement of an ωB-regular (resp., ωS-regular) language is an ωS-regular (resp., ωB-regular) one, the last class is not closed under complementation. The existence of non-ωBS-regular languages that are the complements of some ωBS-regular ones and express fairly natural asymptotic behaviors motivates the search for other significant classes of extended ω-regular languages. In this paper, we present the class of ωT-regular languages, which includes meaningful languages that are not ωBS-regular. We define this new class of languages in terms of ωT-regular expressions. Then, we introduce a new class of automata (counter-check automata) and we prove that (i) their emptiness problem is decidable in PTIME, and (ii) they are expressive enough to capture ωT-regular languages. We also provide an encoding of ωT-regular expressions into S1S+U. Finally, we investigate a stronger variant of ωT-regular languages (-regular languages). We characterize the resulting class of languages in terms of -regular expressions, and we show how to map it into a suitable class of automata, called counter-queue automata. We conclude the paper with a comparison of the expressiveness of ωT- and -regular languages and of the corresponding automata. | en |
| dc.description.department | Sección Deptal. de Sistemas Informáticos y Computación | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.refereed | FALSE | |
| dc.description.sponsorship | European Commission | |
| dc.description.sponsorship | Istituto Nazionale di Alta Matematica (Italia) | |
| dc.description.status | pub | |
| dc.eprint.id | https://eprints.ucm.es/id/eprint/63689 | |
| dc.identifier.citation | Barozzini, D., Frutos Escrig, D., Della Monica, D. et al. «Beyond ω-Regular Languages: ωT-Regular Expressions and Their Automata and Logic Counterparts». Theoretical Computer Science, vol. 813, abril de 2020, pp. 270-304. DOI.org (Crossref), https://doi.org/10.1016/j.tcs.2019.12.029. | |
| dc.identifier.doi | 10.1016/j.tcs.2019.12.029 | |
| dc.identifier.issn | 0304-3975 | |
| dc.identifier.officialurl | https://doi.org/10.1016/j.tcs.2019.12.029 | |
| dc.identifier.relatedurl | https://www.sciencedirect.com/science/article/pii/S0304397519308114 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/7725 | |
| dc.journal.title | Theoretical Computer Science | |
| dc.language.iso | eng | |
| dc.page.final | 304 | |
| dc.page.initial | 270 | |
| dc.publisher | Elsevier | |
| dc.relation.projectID | Marie Curie INdAM-COFUND-2012 Outgoing Fellowship | |
| dc.relation.projectID | Formal methods for the verification and synthesis of discrete and hybrid systems. | |
| dc.rights.accessRights | open access | |
| dc.subject.cdu | 510.6 | |
| dc.subject.keyword | ω-regular languages | |
| dc.subject.keyword | ω-regular expressions | |
| dc.subject.keyword | Counter automata | |
| dc.subject.keyword | Monadic second-order logic of one successor | |
| dc.subject.ucm | Informática (Informática) | |
| dc.subject.ucm | Lógica simbólica y matemática (Matemáticas) | |
| dc.subject.unesco | 1203.17 Informática | |
| dc.subject.unesco | 1102.14 Lógica Simbólica | |
| dc.title | Beyond ω-regular languages: ωT-regular expressions and their automata and logic counterparts | en |
| dc.type | journal article | |
| dc.volume.number | 813 | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | fc861853-ad02-4152-b8b0-e0a8df6080dc | |
| relation.isAuthorOfPublication.latestForDiscovery | fc861853-ad02-4152-b8b0-e0a8df6080dc |
Download
Original bundle
1 - 1 of 1


