Hybrid model to improve wind energy prediction considering data granularity

dc.contributor.authorRicardo de la Rosa, Leslie
dc.contributor.authorGarcía Pérez, Lía
dc.contributor.authorSantos Peñas, Matilde
dc.contributor.authorGómez, Alejandro
dc.date.accessioned2025-11-19T14:07:50Z
dc.date.available2025-11-19T14:07:50Z
dc.date.issued2025-12-14
dc.description.abstractThe growth of wind energy generation as a renewable source in the transition to sustainable energy poses significant challenges in ensuring reliable production forecasting due to the intermittent nature of wind resources. The implementation of advanced forecasting models has become a priority to optimize its integration into the power grid and ensure the stability of the energy supply. This study focuses on improving wind energy predictions through the use of advanced machine learning techniques. The methodology includes a detailed analysis of different forecasting time horizons, sampling rates, and exogenous variable configurations, comparing traditional models such as SARIMAX, XGBoost, and LSTM neural networks with hybrid approaches. Furthermore, performance metrics such as R2, MAE, RMSE and MAPE are evaluated to assess the accuracy and reliability of the proposed models. The results demonstrate that the selection of the optimal model depends on the forecasting horizon, data granularity, and available resources, maximizing precision and efficiency for each scenario.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyInstituto de Tecnología del Conocimiento (ITC)
dc.description.refereedTRUE
dc.description.sponsorshipMICINN AEI FEDER
dc.description.statuspub
dc.identifier.citationde la Rosa, L. R., García-Pérez, L., Santos Peñas, M., & Gómez, A. (2025). Hybrid model to improve wind energy prediction considering data granularity. Results in Engineering, 107646.
dc.identifier.doihttps://doi.org/10.1016/j.rineng.2025.107646
dc.identifier.officialurlhttps://www.sciencedirect.com/science/article/pii/S2590123025036990
dc.identifier.urihttps://hdl.handle.net/20.500.14352/126252
dc.issue.number107646
dc.journal.titleResults in Engineering
dc.language.isoeng
dc.page.final13
dc.page.initial1
dc.publisherElsevier
dc.relation.projectIDMICINN AEI FEDER PID2021-123543OB-C21
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordWind energy forecasting
dc.subject.keywordRenewable energy
dc.subject.keywordMachine learning
dc.subject.keywordSARIMAX
dc.subject.keywordGBoost
dc.subject.keywordLSTM
dc.subject.keywordHybrid model
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleHybrid model to improve wind energy prediction considering data granularity
dc.typejournal article
dc.volume.number28
dspace.entity.typePublication
relation.isAuthorOfPublication2ef81915-7893-41f9-8522-621aba8ca9a0
relation.isAuthorOfPublication99cac82a-8d31-45a5-bb8d-8248a4d6fe7f
relation.isAuthorOfPublication.latestForDiscovery2ef81915-7893-41f9-8522-621aba8ca9a0

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hybrid_model_to_improve_wind_energy_prediction.pdf
Size:
2.3 MB
Format:
Adobe Portable Document Format

Collections