Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A two-stage approach to automatically detect and classify woodpecker (Fam. Picidae) sounds

dc.contributor.authorVidaña-Vila, Ester
dc.contributor.authorNavarro, Joan
dc.contributor.authorAlsina-Pagès, Rosa María
dc.contributor.authorRamírez García, Álvaro
dc.date.accessioned2023-06-17T08:57:37Z
dc.date.available2023-06-17T08:57:37Z
dc.date.issued2020-04-03
dc.description.abstractInventorying and monitoring which bird species inhabit a specific area give rich and reliable information regarding its conservation status and other meaningful biological parameters. Typically, this surveying process is carried out manually by ornithologists and birdwatchers who spend long periods of time in the areas of interest trying to identify which species occur. Such methodology is based on the experts’ own knowledge, experience, visualization and hearing skills, which results in an expensive, subjective and error prone process. The purpose of this paper is to present a computing friendly system able to automatically detect and classify woodpecker acoustic signals from a real-world environment. More specifically, the proposed architecture features a two-stage Learning Classifier System that uses (1) Mel Frequency Cepstral Coefficients and Zero Crossing Rate to detect bird sounds over environmental noise, and (2) Linear Predictive Cepstral Coefficients, Perceptual Linear Predictive Coefficients and Mel Frequency Cepstral Coefficients to identify the bird species and sound type (i.e., vocal sounds such as advertising calls, excitement calls, call notes and drumming events) associated to that bird sound. Conducted experiments over a data set of the known woodpeckers species belonging to the Picidae family that live in the Iberian peninsula have resulted in an overall accuracy of 94,02%, which endorses the feasibility of this proposal and encourage practitioners to work toward this direction.
dc.description.departmentDepto. de Biodiversidad, Ecología y Evolución
dc.description.facultyFac. de Ciencias Biológicas
dc.description.refereedTRUE
dc.description.sponsorshipGeneralitat de Catalunya
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/63664
dc.identifier.doi10.1016/j.apacoust.2020.107312
dc.identifier.issn0003-682X
dc.identifier.officialurlhttps://doi.org/10.1016/j.apacoust.2020.107312
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7716
dc.issue.number107312
dc.journal.titleApplied Acoustics
dc.language.isoeng
dc.publisherElsevier
dc.relation.projectID2017 SGR 977; 2017 SGR 0966
dc.rights.accessRightsrestricted access
dc.subject.cdu574
dc.subject.cdu598.272.6
dc.subject.keywordbirdsong
dc.subject.keywordevent detection
dc.subject.keywordbirdsound classification
dc.subject.keywordwoodpeckers
dc.subject.keywordaudio classification
dc.subject.ucmAves
dc.subject.ucmEcología (Biología)
dc.subject.unesco2401.20 Ornitología
dc.subject.unesco2401.06 Ecología animal
dc.titleA two-stage approach to automatically detect and classify woodpecker (Fam. Picidae) sounds
dc.typejournal article
dc.volume.number166
dspace.entity.typePublication
relation.isAuthorOfPublication66dc15ef-3b28-41b5-853d-ce7657b93bbb
relation.isAuthorOfPublication.latestForDiscovery66dc15ef-3b28-41b5-853d-ce7657b93bbb

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ramirez-DBEE-two-stage.pdf
Size:
2.34 MB
Format:
Adobe Portable Document Format

Collections