Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A graph-based approach for minimising the knowledge requirement of explainable recommender systems

dc.contributor.authorCaro Martínez, Marta
dc.contributor.authorJiménez Díaz, Guillermo
dc.contributor.authorRecio García, Juan Antonio
dc.date.accessioned2024-05-16T15:22:53Z
dc.date.available2024-05-16T15:22:53Z
dc.date.issued2023-05-25
dc.description.abstractTraditionally, recommender systems use collaborative filtering or content-based approaches based on ratings and item descriptions. However, this information is unavailable in many domains and applications, and recommender systems can only tackle the problem using information about interactions or implicit knowledge. Within this scenario, this work proposes a novel approach based on link prediction techniques over graph structures that exclusively considers interactions between users and items to provide recommendations. We present and evaluate two alternative recommendation methods: one item-based and one user-based that apply the edge weight, common neighbours, Jaccard neighbours, Adar/Adamic, and Preferential Attachment link prediction techniques. This approach has two significant advantages, which are the novelty of our proposal. First, it is suitable for minimal knowledge scenarios where explicit data such as ratings or preferences are not available. However, as our evaluation demonstrates, this approach outperforms state-of-the-art techniques using a similar level of interaction knowledge. Second, our approach has another relevant feature regarding one of the most significant concerns in current artificial intelligence research: the recommendation methods presented in this paper are easily interpretable for the users, improving their trust in the recommendations.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Informática
dc.description.fundingtypeAPC financiada por la UCM
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.doi10.1007/s10115-023-01903-9
dc.identifier.urihttps://hdl.handle.net/20.500.14352/104115
dc.journal.titleKnowledge and Information Systems
dc.language.isoeng
dc.page.final4409
dc.page.initial4379
dc.publisherSpringer
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.keywordExplainable recommender systems
dc.subject.keywordInteraction graphs
dc.subject.keywordLink prediction techniques
dc.subject.keywordInterpretability
dc.subject.ucmInformática (Informática)
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleA graph-based approach for minimising the knowledge requirement of explainable recommender systems
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number65
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s10115-023-01903-9.pdf
Size:
1.28 MB
Format:
Adobe Portable Document Format

Collections