Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Shear viscosity of a model for confined granular media

dc.contributor.authorSoto, Rodrigo
dc.contributor.authorRisso, Dino
dc.contributor.authorBrito López, Ricardo
dc.date.accessioned2023-06-19T13:29:42Z
dc.date.available2023-06-19T13:29:42Z
dc.date.copyright©2014 American Physical Society. The research was partially supported by Fondecyt Grants No. 1440778 and No. 1120775 and the Spanish Grant ENFASIS.
dc.date.issued2014
dc.description.abstractThe shear viscosity in the dilute regime of a model for confined granular matter is studied by simulations and kinetic theory. The model consists on projecting into two dimensions the motion of vibrofluidized granular matter in shallow boxes by modifying the collision rule: besides the restitution coefficient that accounts for the energy dissipation, there is a separation velocity that is added in each collision in the normal direction. The two mechanisms balance on average, producing stationary homogeneous states. Molecular dynamics simulations show that in the steady state the distribution function departs from a Maxwellian, with cumulants that remain small in the whole range of inelasticities. The shear viscosity normalized with stationary temperature presents a clear dependence with the inelasticity, taking smaller values compared to the elastic case. A Boltzmann-like equation is built and analyzed using linear response theory. It is found that the predictions show an excellent agreement with the simulations when the correct stationary distribution is used but a Maxwellian approximation fails in predicting the inelasticity dependence of the viscosity. These results confirm that transport coefficients depend strongly on the mechanisms that drive them to stationary states.en
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipFondo Nacional de Desarrollo Científico y Tecnológico (Chile)
dc.description.sponsorshipSpanish Grant ENFASIS
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29109
dc.identifier.citationSoto, Rodrigo, et al. «Shear viscosity of a model for confined granular media». Physical Review E, vol. 90, n.o 6, diciembre de 2014, p. 062204. APS, https://doi.org/10.1103/PhysRevE.90.062204.
dc.identifier.doi10.1103/PhysRevE.90.062204
dc.identifier.issn1539-3755
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevE.90.062204
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33864
dc.issue.number6
dc.journal.titlePhysical Review E
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectID1440778
dc.relation.projectID1120775
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordTransport-coefficients
dc.subject.keywordGas
dc.subject.keywordFluids
dc.subject.keywordFlows
dc.subject.keywordState
dc.subject.keywordOrder
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleShear viscosity of a model for confined granular mediaen
dc.typejournal article
dc.volume.number90
dcterms.references[1] H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Rev. Mod. Phys. 68, 1259 (1996). [2] I. Goldhirsch, Annu. Rev. Fluid Mech. 35, 267 (2003). [3] N. V. Brilliantov and T. Pöschel, Kinetic Theory of Granular Gases (Oxford University Press, Oxford, 2004). [4] J. J. Brey, J. W. Dufty, C. S. Kim, and A. Santos, Phys. Rev. E 58, 4638 (1998). [5] J. J. Brey and D. Cubero, in Granular Gases, edited by T. Pöschel and S. Luding (Springer, Berlin, 2001), pp. 59–78. [6] V. Garzó, A. Santos, and J. M. Montanero, Physica A 376, 94 (2007). [7] A. Santos, V. Garzó, and J. W. Dufty, Phys. Rev E 69, 061303 (2004). [8] P. Cordero, D. Risso, and R. Soto, Physica A 356, 54 (2005). [9] J. S. Olafsen and J. S. Urbach, Phys. Rev. Lett. 81, 4369 (1998). [10] A. Prevost, P. Melby, D. A. Egolf, and J. S. Urbach, Phys. Rev. E 70, 050301(R) (2004). [11] P. Melby et al., J. Phys. Cond. Mat. 17, S2689 (2005). [12] M. G. Clerc et al., Nature Physics 4, 249 (2008). [13] G. Castillo, N. Mújica, and R. Soto, Phys. Rev. Lett. 109, 095701 (2012). [14] F. Pacheco Vázquez, G. A. Caballero Robledo, and J. C. Ruiz Suárez, Phys. Rev. Lett. 102, 170601 (2009). [15] N. Rivas, S. Ponce, B. Gallet, D. Risso, R. Soto, P. Cordero, and N. Mújica, Phys. Rev. Lett. 106, 088001 (2011). [16] A. Puglisi, A. Gnoli, G. Gradenigo, A. Sarracino, and D. Villamaina, J. Chem. Phys. 136, 014704 (2012). [17] G. Gradenigo, A. Sarracino, D. Villamaina, and A. Puglisi, Europhys. Lett. 96, 14004 (2011); A. Puglisi, V. Loreto, U. M. B. Marconi, A. Petri, and A. Vulpiani, Phys. Rev. Lett. 81, 3848 (1998) [18] D. R. M. Williams and F. C. MacKintosh, Phys. Rev. E 54, R9 (1996). [19] T. P. C. van Noije, M. H. Ernst, E. Trizac, and I. Pagonabarraga, Phys. Rev. E 59, 4326 (1999). [20] G. Gradenigo, A. Sarracino, D. Villamaina, and A. Puglisi, J. Stat. Mech. (2011) P08017. [21] A. Barrat, E. Trizac, and J.-N. Fuchs, Eur. Phys. J. E 5, 161 (2001). [22] R. Brito, D. Risso, and R. Soto, Phys. Rev. E 87, 022209 (2013). [23] V. Garzó and J. M. Montanero, Physica A 313, 336 (2002). [24] J. J. Brey, M. I. García de Soria, P. Maynar, and V. Buzón, Phys. Rev. E 88, 062205 (2013). [25] J. J. Brey, P. Maynar, M. I. García de Soria, and V. Buzón, Phys. Rev. E 89, 052209 (2014). [26] J. Javier Brey, M. I. García de Soria, P. Maynar, V. Buzón, Phys. Rev. E 90, 032207 (2014). [30] N. Sela and I. Goldhirsch, J. Fluid Mech. 361, 41 (1998) [31] D. Risso and P. Cordero, Phys. Rev. E 65, 021304 (2002). [32] Y. Pomeau and P. Résibois, Phys. Rep. 19, 63 (1975). [33] M. H. Ernst, B. Cichocki, J. R. Dorfman, J. Sharma, and H. van Beijeren, J. Stat. Phys. 18, 237 (1978). [34] R. Soto, J. Piasecki, and M. Mareschal, Phys. Rev. E 64, 031306 (2001). [35] J. F. Lutsko, Phys. Rev. E 72, 021306 (2005).
dspace.entity.typePublication
relation.isAuthorOfPublicationb5d83e4b-6cf5-4cfc-9a1e-efbf55f71f87
relation.isAuthorOfPublication.latestForDiscoveryb5d83e4b-6cf5-4cfc-9a1e-efbf55f71f87

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevE.90.062204.pdf
Size:
250.94 KB
Format:
Adobe Portable Document Format

Collections