Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Quantum nanoconstrictions fabricated by cryo-etching in encapsulated graphene

dc.contributor.authorClericò, Vito
dc.contributor.authorDelgado Notario, J. A.
dc.contributor.authorSaiz Bretín, Marta
dc.contributor.authorMalyshev, Andrey
dc.contributor.authorMeziani, Y. M.
dc.contributor.authorHidalgo Alcalde, Pedro
dc.contributor.authorMéndez Martín, María Bianchi
dc.contributor.authorAmado, M.
dc.contributor.authorDomínguez-Adame Acosta, Francisco
dc.contributor.authorDíaz Fernández, Enrique
dc.date.accessioned2023-06-17T13:32:54Z
dc.date.available2023-06-17T13:32:54Z
dc.date.issued2019-09-19
dc.description© The Author(s) 2019 This research has been supported by the Agencia Estatal de Investigacion of Spain (Grants MAT2015-65274-R, MAT2016-75955 and TEC2015-65477-R), and the Junta de Castilla y Leon (Grant SA256P18), including FEDER funds from the European Commission. V. C. acknowledges N. Tombros and P. J. Zomer for introducing him in the transfer technique of two-dimensional materials. We are also thankful to D. Lopez and M. Velazquez for their kind help with Raman measurements and G. Kimbell for a critical reading of the manuscript.
dc.description.abstractWe report on a novel implementation of the cryo-etching method, which enabled us to fabricate low-roughness hBN-encapsulated graphene nanoconstrictions with unprecedented control of the structure edges; the typical edge roughness is on the order of a few nanometers. We characterized the system by atomic force microscopy and used the measured parameters of the edge geometry in numerical simulations of the system conductance, which agree quantitatively with our low temperature transport measurements. The quality of our devices is confirmed by the observation of well defined quantized 2e^2/h conductance steps at zero magnetic field. To the best of our knowledge, such an observation reports the clearest conductance quantization in physically etched graphene nanoconstrictions. The fabrication of such high quality systems and the scalability of the cryo-etching method opens a novel promising possibility of producing more complex truly-ballistic devices based on graphene.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)/FEDER
dc.description.sponsorshipJunta de Castilla y León/FEDER
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/57520
dc.identifier.doi10.1038/s41598-019-50098-z
dc.identifier.issn2045-2322
dc.identifier.officialurlhttp://dx.doi.org/10.1038/s41598-019-50098-z
dc.identifier.relatedurlhttps://www.nature.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/13731
dc.journal.titleScientific reports
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.projectID(MAT2015-65274-R; MAT2016-75955; TEC2015-65477-R)
dc.relation.projectIDSA256P18
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu538.9
dc.subject.keywordMultidisciplinary Sciences
dc.subject.keywordGraphene
dc.subject.ucmFísica de materiales
dc.subject.ucmFísica del estado sólido
dc.subject.unesco2211 Física del Estado Sólido
dc.titleQuantum nanoconstrictions fabricated by cryo-etching in encapsulated graphene
dc.typejournal article
dc.volume.number9
dspace.entity.typePublication
relation.isAuthorOfPublicationb2abe0ef-0417-4f43-8dce-55d3205e22ec
relation.isAuthorOfPublicationc834e5a4-3450-4ff7-8ca1-663a43f050bb
relation.isAuthorOfPublication465cfd5b-6dd4-4a48-a6e3-160df06f7046
relation.isAuthorOfPublicationdbc02e39-958d-4885-acfb-131220e221ba
relation.isAuthorOfPublication.latestForDiscoveryb2abe0ef-0417-4f43-8dce-55d3205e22ec

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MendezBianchi102libre+CC.pdf
Size:
1.5 MB
Format:
Adobe Portable Document Format

Collections