Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Kontrastive Fehleranalyse Deutsch-Spanisch der NMT in verschiedenen Textsorten

dc.book.titleArbeitswelten von gestern bis heute: neue studien in germanistik, übersetzungswissenschaft und DAF
dc.contributor.authorCases Berbel, Elke
dc.contributor.editorLeibrandt, Isabella
dc.contributor.editorJahn, Kathrin
dc.contributor.editorDoval, Irene
dc.date.accessioned2024-02-05T18:30:00Z
dc.date.available2024-02-05T18:30:00Z
dc.date.issued2022
dc.description.abstractIn times of digital transformation, translators need to adapt to machine translation (MT). Initially, this was based on a statistical model (Statistical Machine Translation, SMT), a paradigm in which translations are produced based on statistical models whose parameters are derived from analysis of bilingual text corpora (Koehn, 2009). In 2017, however, Neural Machine Translation (NMT) based on deep learning was launched (Schwan, 2017). This translator uses Convolutional Neural Networks (CNN), artificial neural data and, in case of error, tries again and repeats the sequence until it gets it right (Geitgey, 2016). In this paper we set out to machine translate Germand and Spanish texts from different branches of technical language and finally analyse the errors committed by DeepL. For this purpose, literary, journalistic, technical and official/legal texts were chosen. On one hand, we want to see whether NMT really works as well as we are told and, on the other hand, to see which branches of the translation industry can benefit most from NMT. Another aim is to generate different strategies that can help to overcome the errors caused by DeepL.
dc.description.departmentDepto. de Estudios Románicos, Franceses, Italianos y Traducción
dc.description.facultyFac. de Filología
dc.description.refereedTRUE
dc.description.sponsorshipUniversidad de Valencia
dc.description.statuspub
dc.identifier.citationLeibrandt, Isabella. Arbeitswelten von gestern bis heute. Peter Lang CH, 2021. https://doi.org/10.3726/b18775.
dc.identifier.doi10.3726/b18775
dc.identifier.isbn978-3-0343-4096-0
dc.identifier.officialurlhttps://www.doi.org/10.3726/b18775
dc.identifier.relatedurlhttps://www.peterlang.com/document/1154231
dc.identifier.urihttps://hdl.handle.net/20.500.14352/99173
dc.language.isodeu
dc.page.final136
dc.page.initial115
dc.page.total22
dc.publication.placeBerna
dc.publisherPeter Lang
dc.relation.ispartofseriesPerspektiven der Germanistik und Komparatistik in Spanien
dc.rights.accessRightsmetadata only access
dc.subject.cdu8
dc.subject.keywordStatistical Machine Translation (SMT)
dc.subject.keywordNeural Machine Translation (NMT)
dc.subject.keywordConvolutional Neural Networks (CNN)
dc.subject.keywordDeepL
dc.subject.keywordError Analysis
dc.subject.ucmHumanidades
dc.subject.unesco57 Lingüística
dc.titleKontrastive Fehleranalyse Deutsch-Spanisch der NMT in verschiedenen Textsorten
dc.typebook part
dc.volume.number19
dspace.entity.typePublication
relation.isAuthorOfPublication3d495272-ed4a-4df6-9398-e20d601f6ebd
relation.isAuthorOfPublication.latestForDiscovery3d495272-ed4a-4df6-9398-e20d601f6ebd

Download