Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Prediction of gas concentration based on the opposite degree algorithm

dc.contributor.authorYue, Xiao-Guang
dc.contributor.authorGao, Rui
dc.contributor.authorMcAleer, Michael
dc.date.accessioned2023-06-18T10:25:47Z
dc.date.available2023-06-18T10:25:47Z
dc.date.issued2016
dc.description.abstractIn order to study the dynamic changes in gas concentration, to reduce gas hazards, and to protect and improve mining safety, a new method is proposed to predict gas concentration. The method is based on the opposite degree algorithm. Priori and posteriori values, opposite degree computation, opposite space, prior matrix, and posterior matrix are 6 basic concepts of opposite degree algorithm. Several opposite degree numerical formulae to calculate the opposite degrees between gas concentration data and gas concentration data trends can be used to predict empirical results. The opposite degree numerical computation (OD-NC) algorithm has greater accuracy than several common prediction methods, such as RBF (Radial Basis Function) and GRNN (General Regression Neural Network). The prediction mean relative errors of RBF, GRNN and OD-NC are 7.812%, 5.674% and 3.284%, respectively. Simulation experiments shows that the OD-NC algorithm is feasible and effective.
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.facultyInstituto Complutense de Análisis Económico (ICAE)
dc.description.refereedFALSE
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/37245
dc.identifier.relatedurlhttps://www.ucm.es/icae
dc.identifier.urihttps://hdl.handle.net/20.500.14352/27565
dc.issue.number05
dc.language.isoeng
dc.page.total22
dc.relation.ispartofseriesDocumentos de Trabajo del Instituto Complutense de Análisis Económico (ICAE)
dc.rights.accessRightsopen access
dc.subject.jelC53
dc.subject.jelC63
dc.subject.jelL71
dc.subject.keywordGas concentration
dc.subject.keywordOpposite degree algorithm
dc.subject.keywordData prediction
dc.subject.keywordMining safety
dc.subject.keywordNumerical simulations.
dc.subject.ucmMineralogía (Geología)
dc.subject.ucmOptimización matemática
dc.subject.ucmEconometría (Economía)
dc.subject.unesco2506.11 Mineralogía
dc.subject.unesco5302 Econometría
dc.titlePrediction of gas concentration based on the opposite degree algorithm
dc.typetechnical report
dc.volume.number2016
dcterms.references[1] Zhou, X.Q. (2014), Analysis of emergency management importance based on mine gas explosion accidents, Coal Mine Science and Technology, 42(1), 40-43. [2] Fang, H.G. (1993), Estimation of gas emission time and prediction of gas concentration in the stop wind area, Coal Mine Safety, 9, 30-31. [3] Zhou, C.C., Y.P. Huang(1995), All state prediction of gas concentration in working environment, Journal of Xi'an Mining Institute, 4, 315-319. [4] Obst, O., X.R. Wang, M. Prokopenko (2008), Using echo state networks for anomaly detection in underground coal mines, Proceedings of 2008 International Conference on Information Processing in Sensor Networks, St. Louis, USA, pp. 219-229. [5] Sikora, M., Z. Krzystanek, B. Bojko, et al. (2008), Hybrid adaptative system of gas concentration prediction in hard-coal mines, Proceedings of 19th International Conference on Systems Engineering, Las Vegas, USA, pp. 159-164. [6] Wei, X., R. Wang, J.T. Wu (2010), The research of gas concentration prediction model based on Monte Carlo method and HJM, Industry and Mine Automation, 5, 37-40. [7] Wang, X.O., J. Liu, J.J. Lu (2011), Gas concentration forecasting approach based on wavelet transform and optimized predictor, Journal of Basic Science and Engineering, 19(3), 499-508. [8] Unnikrishna Menon, K.A., M. Deepa, H. Thirugnanam (2012), Energy efficient clustering protocol for early warning system for miner's safety in coal mines, Proceedings of 21st Annual Wireless and Optical Communications Conference, Kaohsiung, Taiwan, pp. 99-104. [9] Li, F.L. (2006), Study on the prediction method of neural network based on financial securities, Master Thesis, Qingdao University. [10] Deng, Y.C., X.M. Liang (2009), Accelerating convergency genetic algorithm of improved operator, Modern Electronics Technique, 2, 139-141. [11] Yue, X.-G., G. Zhang, Q. Wu, F. Li, X.F. Chen, G.F. Ren, M. Li (2015), Wearing prediction of stellite alloys based on opposite degree algorithm, Rare Metals, 34(2), 125-132. [12] Yue, X.-G., S.K. Boddhu, Y. Lu, F.Y. Xiao, T. Memonen and M.V. Cañiv (2016), Gas outburst prediction based on OD algorithm, Recent Patents on Computer Science, 9(1), 25-39. [13] Wang, X.C., X.-G. Yue, M. Ranjbar, S.K. Sanjar, M.V. Cañiv (2014), Opposite degree algorithm and its application in engineering data processing, Computer Modelling and New Technologies, 18(11), 482-485. [14] Zhou, S., X.-G. Yue (2015), Soft soil foundation settlement prediction and economic cost management analysis based on new algorithm, Proceedings of ICEMCS, Shenyang, China, 17, pp. 395-399. [15] Zeng, Q.Q. (2011), Prediction of coal mine gas concentration based on quotient space, Master Thesis, Taiyuan University of Technology, China.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1605.pdf
Size:
489.06 KB
Format:
Adobe Portable Document Format