Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Modelling an forecasting time series sampled at different frequencies

dc.contributor.authorCasals Carro, José
dc.contributor.authorJerez Méndez, Miguel
dc.contributor.authorSotoca López, Sonia
dc.date.accessioned2023-06-20T16:39:35Z
dc.date.available2023-06-20T16:39:35Z
dc.date.issued2006
dc.description.abstractThis paper discusses how to specify an observable high-frequency model for a vector of time series sampled at high and low frequencies. To this end we first study how aggregation over time affects both, the dynamic components of a time series and their observability, in a multivariate linear framework. We find that the basic dynamic components remain unchanged but some of them, mainly those related to the seasonal structure, become unobservable. Building on these results, we propose a structured specification method built on the idea that the models relating the variables in high and low sampling frequencies should be mutually consistent. After specifying a consistent and observable high-frequency model, standard state-space techniques provide an adequate framework for estimation, diagnostic checking, data interpolation and forecasting. Our method has three main uses. First, it is useful to disaggregate a vector of low-frequency time series into high-frequency estimates coherent with both, the sample information and its statistical properties. Second, it may improve forecasting of the low-frequency variables, as the forecasts conditional to high-frequency indicators have in general smaller error variances than those derived from the corresponding low-frequency values. Third, the resulting forecasts can be updated as new high-frequency values become available, thus providing an effective tool to assess the effect of new information over medium term expectations. An example using national accounting data illustrates the practical application of this method.
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.facultyInstituto Complutense de Análisis Económico (ICAE)
dc.description.refereedFALSE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/7911
dc.identifier.relatedurlhttps://www.ucm.es/icae
dc.identifier.urihttps://hdl.handle.net/20.500.14352/56637
dc.issue.number03
dc.language.isoeng
dc.page.total50
dc.publication.placeMadrid
dc.publisherInstituto Complutense de Análisis Económico. Universidad Complutense de Madrid
dc.relation.ispartofseriesDocumentos de Trabajo del Instituto Complutense de Análisis Económico (ICAE)
dc.rights.accessRightsopen access
dc.subject.keywordState-space models
dc.subject.keywordKalman filter
dc.subject.keywordTemporal disaggregation
dc.subject.keywordObservability
dc.subject.keywordSeasonality
dc.subject.ucmEconometría (Economía)
dc.subject.unesco5302 Econometría
dc.titleModelling an forecasting time series sampled at different frequencies
dc.typetechnical report
dc.volume.number2006
dcterms.referencesAmemiya, T. & Wu, R.Y. (1972). The Effect of Aggregation on Prediction in the Autoregressive Model, Journal of the American Statistical Association, 339, 628-632. Anderson, B.D.O. & Moore, J.B. (1979). Optimal Filtering, Englewood Cliffs (NJ): Prentice-Hall. Ansley, C.F. & Kohn, R. (1983). Exact Likelihood of Vector Autoregressive-Moving Average Process with Missing or Aggregated Data, Biometrika, 70, 1, 275–278. Ansley, C. F. & Kohn, R. (1989). Filtering and Smoothing in State Space Models with Partially Diffuse Initial Conditions, Journal of Time Series Analysis, 11, 275–293. Baffigi, A., Golinelli, R. & Parigi, G. (2004). Bridge Models to Forecast the Euro Area GDP, International Journal of Forecasting, 20, 447-460. Bitmead, R.R., Gevers, M.R. Petersen, I.R. & Kaye R.J. (1985). Monotonicity and Stabilizability Properties of the Solutions of the Riccati Difference Equation: Propositions, Lemmas, Theorems, Fallacious Conjectures and Counterexamples, System Control Letters, 5, 309-315. Brewer, K.W. (1973). Some Consequences of Temporal Aggregation and Systematic Sampling for ARMA and ARMAX Models, Journal of Econometrics, 1, 133-154. Casals, J. Sotoca, S. & Jerez, M. (1999). A Fast and Stable Method to Compute the Likelihood of Time Invariant State-Space Models, Economics Letters, 65, 329-337. Casals, J. Jerez, M. & Sotoca, S. (2000). Exact Smoothing for Stationary and Nonstationary Time Series, International Journal of Forecasting, 16, 1, 59-69. Casals, J. Jerez, M. & Sotoca, S. (2002). An Exact Multivariate Model-based Structural Decomposition, Journal of the American Statistical Association, 97, 458, 553-564. Chow, G.C. & Lin, A.L. (1971). Best Linear Unbiased Interpolation, Distribution and Extrapolation of Time Series by Related Series, The Review of Economics and Statistics, 53, 372-375. De Jong, P. (1991). The diffuse Kalman filter, The Annals of Statistics, 19, 1073–1083. Denton, F.T. (1971). Adjustment of Monthly or Quarterly Series to Annual Totals: An Approach Based on Quadratic Minimization, Journal of the American Statistical Association, 66, 333, 99-102. Di Fonzo, T. (1990). The Estimation of M Disaggregate Time Series when Contemporaneous and Temporal Aggregates are Known, The Review of Economics and Statistics, 72, 1, 178-182. Di Fonzo, T. & Marini, M. (2005). Benchmarking Systems of Seasonally Adjusted Time Series, Journal of Business Cycles Measurement and Analysis, 2, 1, 89-123. Durbin, J. & Quenneville, B. (1997). Benchmarking by State Space Models, International Statistical Review / Revue Internationale de Statistique, 65, 1, 23-48. Fernández, R.B. (1981). A Methodological Note on the Estimation of Time Series, The Review of Economics and Statistics, 63, 471-476. Granger, C.W.J. (1990). Aggregation of Time-Series Variables: A Survey, in Disaggregation in Econometric Modelling, eds. T. Barker and M.H. Pesaran, pp. 17-34, Routledge, London. Granger, C.W.J. & Siklos, P.R. (1995). Systematic Sampling, Temporal Aggregation, Seasonal Adjustment and Cointegration. Theory and Evidence, Journal of Econometrics, 66, 357-369. Hannan, E. J. & Deistler, M. (1988). The Statistical Theory of Linear Systems. New York: John Wiley, Harvey, A.C. & Pierse, R.G. (1984). Estimating Missing Observations in Economic Time Series, Journal of the American Statistical Association, 79, 385, 125-131. Harvey, A.C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge (UK): Cambridge University Press. Jenkins, G.M. & Alavi, A.S. (1981). Some Aspects of Modelling and Forecasting Multivariate Time Series, Journal of Time Series Analysis, 2, 1, 1-47. Kalman, R.E. (1963). Mathematical Description of Linear Systems, SIAM Journal of Control, 1, 152-192. Litterman, R.B. (1983). A Random Walk, Markov Model for the Distribution of Time Series, Journal of Business and Economic Statistics, 1, 169-173. Lütkepohl, H. (1987). Forecasting Aggregated Vector ARMA Processes, Berlin: Springer-Verlag. Marcellino, M. (1999). Some Consequences of Temporal Aggregation in Empirical Analysis, Journal of Business and Economic Statistics, 1, 129-136. Nunes, L.C. (2005). Nowcasting Quarterly GDP Growth in a Monthly Coincident Indicator Model, Journal of Forecasting, 24, 575-592. Onof, C. Wheater, H. Chandler, D. Isham, V. Cox, D.R. Kakou, A. Northrop, P. Oh, L. & RodriguezIturbe, I. (2000). Spatial-Temporal Rainfall Fields: Modelling and Statistical Aspects, Hydrology and Earth System Sciences, 4, 4, 581-601. Petkov, P.Hr. Christov, N.D. & Konstantinov, M.M. (1991). Computational Methods for Linear Control Systems, Englewood Cliffs (NJ): Prentice-Hall. Pierse, R.G. & Snell, A.J. (1995). Temporal Aggregation and the Power of Tests for a Unit Root, Journal of Econometrics, 65, 333-345. Proietti, T. (2006). Temporal Disaggregation by State Space Methods: Dynamic Regression Methods Revisited, Econometrics Journal, 9, 357-372. Rosenbrock, M.M. (1970). State-Space and Multivariable Theory, New York: John Wiley. Santos-Silva, J.M.C. & Cardoso, F. (2001). The Chow-Lin Method using Dynamic Models, Economic Modelling, 18, 269-280. Stram, D.O. & Wei, W.W.S. (1986). Temporal Aggregation in the ARIMA Process, Journal of Time Series Analysis, 7, 4, 279-292. Tiao, G.C. (1972). Asymptotic Behavior of Time Series Aggregates, Biometrika, 59, 521-531. Terceiro, J. (1990). Estimation of Dynamic Econometric Models with Errors in Variables, Berlin: Springer-Verlag. Wei, W.W.S. (1978). Some Consequences of Temporal Aggregation in Seasonal Time Series Models” In: Zellner, A. (ed.), Seasonal Analysis of Economic Time Series, Washington DC: Bureau of the Census, 433-448. Wei, W.W.S. & Stram, D.O. (1990). Disaggregation of Time Series Models, Journal of the Royal Statistical Society, B Series, 52, 3, 453-467.
dspace.entity.typePublication
relation.isAuthorOfPublicationfdb804b2-ac97-4a0a-bd74-9414c4b86042
relation.isAuthorOfPublication138478db-3f49-41e4-a76e-ff6d03e56bb8
relation.isAuthorOfPublication.latestForDiscoveryfdb804b2-ac97-4a0a-bd74-9414c4b86042

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0603.pdf
Size:
550.12 KB
Format:
Adobe Portable Document Format