Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Machine Learning Techniques for Canine Myxomatous Mitral Valve Disease Classification: Integrating Anamnesis, Quality of Life Survey, and Physical Examination

dc.contributor.authorEngel-Manchado, Javier
dc.contributor.authorMontoya-Alonso, José Alberto
dc.contributor.authorDoménech, Luis
dc.contributor.authorMonge-Utrilla, Óscar
dc.contributor.authorReina Doreste, Yamir
dc.contributor.authorMatos Rivero, Jorge Isidoro
dc.contributor.authorCaro Vadillo, Alicia
dc.contributor.authorGarcía-Guasch, Laín
dc.contributor.authorRedondo, José Ignacio
dc.date.accessioned2024-04-16T17:20:44Z
dc.date.available2024-04-16T17:20:44Z
dc.date.issued2024-03-06
dc.descriptionAuthor Contributions: J.E.-M. and J.I.R.: study design, analysis, and interpretation of data; drafting of the manuscript; data analysis: J.I.R. and L.D., J.E.-M., J.I.R., J.A.M.-A., O.M.-U., Y.R.-D., J.I.M., A.C.-V. and L.G.-G.: revision of the manuscript. All authors participated in the discussion of the results, corrected, read, and approved the final manuscript. All authors have read and agreed to the published version of the manuscript.
dc.description.abstractMyxomatous mitral valve disease (MMVD) is a prevalent canine cardiac disease typically diagnosed and classified using echocardiography. However, accessibility to this technique can be limited in first-opinion clinics. This study aimed to determine if machine learning techniques can classify MMVD according to the ACVIM classification (B1, B2, C, and D) through a structured anamnesis, quality of life survey, and physical examination. This report encompassed 23 veterinary hospitals and assessed 1011 dogs for MMVD using the FETCH-Q quality of life survey, clinical history, physical examination, and basic echocardiography. Employing a classification tree and a random forest analysis, the complex model accurately identified 96.9% of control group dogs, 49.8% of B1, 62.2% of B2, 77.2% of C, and 7.7% of D cases. To enhance clinical utility, a simplified model grouping B1 and B2 and C and D into categories B and CD improved accuracy rates to 90.8% for stage B, 73.4% for stages CD, and 93.8% for the control group. In conclusion, the current machine-learning technique was able to stage healthy dogs and dogs with MMVD classified into stages B and CD in the majority of dogs using quality of life surveys, medical history, and physical examinations. However, the technique faces difficulties differentiating between stages B1 and B2 and determining between advanced stages of the disease.
dc.description.departmentDepto. de Medicina y Cirugía Animal
dc.description.facultyFac. de Veterinaria
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationEngel-Manchado, J.; Montoya-Alonso, J.A.; Doménech, L.; Monge-Utrilla, O.; Reina-Doreste, Y.; Matos, J.I.; Caro-Vadillo, A.; García-Guasch, L.; Redondo, J.I. Machine Learning Techniques for Canine Myxomatous Mitral Valve Disease Classification: Integrating Anamnesis, Quality of Life Survey, and Physical Examination. Vet. Sci. 2024, 11, 118. https://doi.org/ 10.3390/vetsci11030118
dc.identifier.doi10.3390/vetsci11030118
dc.identifier.issn2306-7381
dc.identifier.officialurlhttps://www.mdpi.com/2306-7381/11/3/118
dc.identifier.urihttps://hdl.handle.net/20.500.14352/103169
dc.issue.number118
dc.journal.titleVeterinary Sciences
dc.language.isoeng
dc.publisherMDPI
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu636.09
dc.subject.keywordAnamnesis
dc.subject.keywordClinical diagnosis
dc.subject.keywordMachine learning
dc.subject.keywordPredictive model
dc.subject.keywordMyxomatous mitral valve disease
dc.subject.keywordDog
dc.subject.ucmVeterinaria
dc.subject.unesco3109 Ciencias Veterinarias
dc.titleMachine Learning Techniques for Canine Myxomatous Mitral Valve Disease Classification: Integrating Anamnesis, Quality of Life Survey, and Physical Examination
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number11
dspace.entity.typePublication
relation.isAuthorOfPublication8e6c38ec-45b7-40a0-bd0f-d3341387671c
relation.isAuthorOfPublication.latestForDiscovery8e6c38ec-45b7-40a0-bd0f-d3341387671c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
vetsci-11-00118.pdf
Size:
10.36 MB
Format:
Adobe Portable Document Format
Description:
Machine Learning Techniques for Canine Myxomatous Mitral Valve Disease Classification: Integrating Anamnesis, Quality of Life Survey, and Physical Examination

Collections