Direct observation of drops on slippery lubricant-infused surfaces

dc.contributor.authorSchellenberger, Frank
dc.contributor.authorXie, Jing
dc.contributor.authorEncinas García, Noemí
dc.contributor.authorHardy, Alexandre
dc.contributor.authorKlapper, Markus
dc.contributor.authorPapadopoulos, Periklis
dc.contributor.authorButt, Hans-Jürgen
dc.contributor.authorVollmer, Doris
dc.date.accessioned2024-02-07T12:25:45Z
dc.date.available2024-02-07T12:25:45Z
dc.date.issued2015
dc.descriptionWe thank G. Glasser, G. Scha¨fer, T. Schuster and M. Wagner for technical support, and K. Varanasi, T. Kajiya and G. Auernhammer for stimulating discussions, and J. Pham for carefully reading the manuscript. Financial support from SPP 1420 (H.J.B.), COST1106 (D.V.), and ERC grant SuPro (H.J.B.) is gratefully acknowledged.
dc.description.abstractFor a liquid droplet to slide down a solid planar surface, the surface usually has to be tilted above a critical angle of approximately 10°. By contrast, droplets of nearly any liquid “slip” on lubricant-infused textured surfaces – so termed slippery surfaces – when tilted by only a few degrees. The mechanism of how the lubricant alters the static and dynamic properties of the drop remains elusive because the drop–lubricant interface is hidden. Here, we image the shape of drops on lubricant-infused surfaces by laser scanning confocal microscopy. The contact angle of the drop–lubricant interface with the substrate exceeds 140°, although macroscopic contour images suggest angles as low as 60°. Confocal microscopy of moving drops reveals fundamentally different processes at the front and rear. Drops recede via discrete depinning events from surface protrusions at a defined receding contact angle, whereas the advancing contact angle is 180°. Drops slide easily, as the apparent contact angles with the substrate are high and the drop–lubricant interfacial tension is typically lower than the drop–air interfacial tension. Slippery surfaces resemble superhydrophobic surfaces with two main differences: drops on a slippery surface are surrounded by a wetting ridge of adjustable height and the air underneath the drop in the case of a superhydrophobic surface is replaced by lubricant in the case of a slippery surface.
dc.description.departmentDepto. de Ingeniería Química y de Materiales
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Commission
dc.description.statuspub
dc.identifier.citationSchellenberger F, Xie J, Encinas N, Hardy A, Klapper M, Papadopoulos P, Butt H.-J, Vollmer D. Direct observation of drops on slippery lubricant-infused surfaces. Soft Matter. 2015 Aug 13;11:7617-7626
dc.identifier.doi10.1039/C5SM01809A
dc.identifier.issn1744-683X
dc.identifier.officialurlhttps://doi.org/10.1039/C5SM01809A
dc.identifier.urihttps://hdl.handle.net/20.500.14352/99955
dc.issue.number11
dc.journal.titleSoft Matter
dc.language.isoeng
dc.page.final7626
dc.page.initial7617
dc.publisherRoyal Society of Chemistry
dc.relation.projectIDSPP 1420 (H.J.B.)
dc.relation.projectIDCOST1106 (D.V.)
dc.relation.projectIDERC grant SuPro (H.J.B.)
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu620
dc.subject.cdu66.0
dc.subject.keywordConfocal microscopy
dc.subject.keywordContact angle
dc.subject.keywordHydrophobicity
dc.subject.keywordInterfaces (materials)
dc.subject.keywordSolid lubricants
dc.subject.keywordSurface properties
dc.subject.keywordWetting
dc.subject.ucmIngeniería química
dc.subject.ucmMateriales
dc.subject.unesco3303 Ingeniería y Tecnología Químicas
dc.subject.unesco3312 Tecnología de Materiales
dc.titleDirect observation of drops on slippery lubricant-infused surfaces
dc.typejournal article
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublicationffd83794-c624-4d8c-b347-094455746a35
relation.isAuthorOfPublication.latestForDiscoveryffd83794-c624-4d8c-b347-094455746a35

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Direct_observation_of_drops.pdf
Size:
7.15 MB
Format:
Adobe Portable Document Format

Collections