Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Genomic Fishing and Data Processing for Molecular Evolution Research

dc.contributor.authorLorente Martínez, Héctor
dc.contributor.authorAgorreta, Ainhoa
dc.contributor.authorSan Mauro Martín, Diego
dc.date.accessioned2023-07-26T16:06:14Z
dc.date.available2023-07-26T16:06:14Z
dc.date.issued2022-03-07
dc.description.abstractMolecular evolution analyses, such as detection of adaptive/purifying selection or ancestral protein reconstruction, typically require three inputs for a target gene (or gene family) in a particular group of organisms: sequence alignment, model of evolution, and phylogenetic tree. While modern advances in high-throughput sequencing techniques have led to rapid accumulation of genomic-scale data in public repositories and databases, mining such vast amount of information often remains a challenging enterprise. Here, we describe a comprehensive, versatile workflow aimed at the preparation of genome-extracted datasets readily available for molecular evolution research. The workflow involves: (1) fishing (searching and capturing) specific gene sequences of interest from taxonomically diverse genomic data available in databases at variable levels of annotation, (2) processing and depuration of retrieved sequences, (3) production of a multiple sequence alignment, (4) selection of best-fit model of evolution, and (5) solid reconstruction of a phylogenetic tree.
dc.description.departmentDepto. de Biodiversidad, Ecología y Evolución
dc.description.facultyFac. de Ciencias Biológicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación de España
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.sponsorshipReal Colegio Complutense at Harvard University (RCC-UCM).
dc.description.statuspub
dc.identifier.doi10.3390/mps5020026
dc.identifier.essn2409-9279
dc.identifier.officialurlhttps://www.mdpi.com/2409-9279/5/2/26
dc.identifier.urihttps://hdl.handle.net/20.500.14352/87344
dc.issue.number2
dc.journal.titleMethods and protocols
dc.language.isoeng
dc.page.final23
dc.page.initial1
dc.publisherMDPI
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115481GB-I00/ES/LAS INTERACCIONES PARASITO-HOSPEDADOR PUEDEN GENERAR DIVERSIDAD EN PECES CICLIDOS /
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu575
dc.subject.cdu577
dc.subject.keywordGenomics
dc.subject.keywordHigh-throughput sequencing
dc.subject.keywordData mining
dc.subject.keywordGene family
dc.subject.keywordBlast search
dc.subject.keywordSequence alignment
dc.subject.keywordPhylogeny
dc.subject.keywordMolecular evolution
dc.subject.ucmBiología molecular (Biología)
dc.subject.ucmGenética
dc.subject.ucmEvolución
dc.subject.unesco2415 Biología Molecular
dc.subject.unesco2409 Genética
dc.titleGenomic Fishing and Data Processing for Molecular Evolution Research
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number5
dspace.entity.typePublication
relation.isAuthorOfPublication250c9e14-3eff-4441-a017-995ebca96656
relation.isAuthorOfPublicatione9b7c076-028a-4002-8376-5ff69f006127
relation.isAuthorOfPublication.latestForDiscovery250c9e14-3eff-4441-a017-995ebca96656

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lorente-DBEE-Genomic Fishing -.pdf
Size:
6.2 MB
Format:
Adobe Portable Document Format

Collections