Offshore wind turbines anomalies detection based on a new normalized power index

dc.contributor.authorWeiss, Bassel
dc.contributor.authorSan Román, Segundo Esteban
dc.contributor.authorSantos Peñas, Matilde
dc.date.accessioned2025-10-27T16:03:35Z
dc.date.available2025-10-27T16:03:35Z
dc.date.issued2025-09-30
dc.description.abstractAnomaly detection in wind turbines involves emphasizing its ability to improve operational efficiency, reduce maintenance costs, extend their lifespan, and enhance reliability in the wind energy sector. This is particularly necessary in offshore wind, currently one of the most critical assets for achieving sustainable energy generation goals, due to the harsh marine environment and the difficulty of maintenance tasks. To address this problem, this work proposes a data-driven methodology for detecting power generation anomalies in offshore wind turbines, using normalized and linearized operational data. The proposed framework transforms heterogeneous wind speed and power measurements into a unified scale, enabling the development of a new wind power index (WPi) that quantifies deviations from expected performance. Additionally, spatial and temporal coherence analyses of turbines within a wind farm ensure the validity of these normalized measurements across different wind turbine models and operating conditions. Furthermore, a Support Vector Machine (SVM) refines the classification process, effectively distinguishing measurement errors from actual power generation failures. Validation of this strategy using real-world data from the Alpha Ventus wind farm demonstrates that the proposed approach not only improves predictive maintenance but also optimizes energy production, highlighting its potential for broad application in offshore wind installations.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyInstituto de Tecnología del Conocimiento (ITC)
dc.description.refereedTRUE
dc.description.sponsorshipMICINN AEI FEDER PID2021-123543OB-C21
dc.description.statuspub
dc.identifier.citationWeiss, B., Esteban, S., & Santos, M. (2025). Offshore Wind Turbines Anomalies Detection Based on a New Normalized Power Index. CMES-Computer Modeling in Engineering and Sciences, 144(3), 3387-3418.
dc.identifier.doi10.32604/cmes.2025.070070
dc.identifier.officialurlhttps://www.sciencedirect.com/org/science/article/pii/S1526149225003005
dc.identifier.urihttps://hdl.handle.net/20.500.14352/125426
dc.issue.number3
dc.journal.titleCMES - Computer Modeling in Engineering and Sciences
dc.language.isoeng
dc.page.final3418
dc.page.initial3387
dc.publisherTech Science Press
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordFault identification
dc.subject.keywordAnomaly detection
dc.subject.keywordNormalization
dc.subject.keywordOffshore wind turbines
dc.subject.keywordWind energy
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.unesco3322.02 Generación de Energía
dc.titleOffshore wind turbines anomalies detection based on a new normalized power index
dc.typejournal article
dc.volume.number144
dspace.entity.typePublication
relation.isAuthorOfPublication99cac82a-8d31-45a5-bb8d-8248a4d6fe7f
relation.isAuthorOfPublication.latestForDiscovery99cac82a-8d31-45a5-bb8d-8248a4d6fe7f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Offshore_wind_turbines_anomalies.pdf
Size:
22.18 MB
Format:
Adobe Portable Document Format

Collections