Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Leveraging knowledge-as-a-service (KaaS) for QoS-aware resource management in multi-user video transcoding

Loading...
Thumbnail Image

Full text at PDC

Publication date

2020

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Citations
Google Scholar

Citation

Abstract

The coexistence of parallel applications in shared computing nodes, each one featuring different Quality of Service (QoS) requirements, carries out new challenges to improve resource occupation while keeping acceptable rates in terms of QoS. As more application-specific and system-wide metrics are included as QoS dimensions, or under situations in which resource-usage limits are strict, building and serving the most appropriate set of actions (application control knobs and system resource assignment) to concurrent applications in an automatic and optimal fashion become mandatory. In this paper, we propose strategies to build and serve this type of knowledge to concurrent applications by leveraging Reinforcement Learning techniques. Taking multi-user video transcoding as a driving example, our experimental results reveal an excellent adaptation of resource and knob management to heterogeneous QoS requests, and increases in the amount of concurrently served users up to 1.24× compared with alternative approaches considering homogeneous QoS requests.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections