Kuratowski convergence of holomorphic functions

dc.contributor.authorFerrera Cuesta, Juan
dc.contributor.authorPrieto Yerro, M. Ángeles
dc.date.accessioned2023-06-20T09:34:06Z
dc.date.available2023-06-20T09:34:06Z
dc.date.issued2004
dc.description.abstractThe notion of Kuratowski convergence is applied to describe a kind of convergence in the context of holomorphic functions. We associate it to a convenient topology, explore its relation with the compact-open topology, thus providing a new set theoretic point of view of this classic topology, and present it in the framework of set-valued mappings.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia y Tecnología
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15216
dc.identifier.doi10.1007/s00605-004-0251-6
dc.identifier.issn0026-9255
dc.identifier.officialurlhttp://www.springerlink.com/content/f0pundx05rt17jbb/fulltext.pdf?MUD=MP
dc.identifier.relatedurlhttp://www.springerlink.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49925
dc.issue.number1
dc.journal.titleMonatshefte für Mathematik
dc.language.isoeng
dc.page.final12
dc.page.initial1
dc.publisherSpringer-Verlag, Wien
dc.relation.projectIDBFM 2000=0609
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordHolomorphic functions
dc.subject.keywordConvergence of level sets
dc.subject.keywordKuratowski convergence
dc.subject.keywordSet-valued mappings
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleKuratowski convergence of holomorphic functions
dc.typejournal article
dc.volume.number143
dcterms.referencesBeer G (1989) Convergence of continuous linear functions and their level sets. Arch Math 52: 482–491 Beer G (1993) Topologies on closed and closed convex sets. Dordrecht: Kluwer Conway JB (1978) Functions of One Complex Variable. 2nd ed. Berlin Heidelberg New York: Springer Ferrera J (1996) Convergence of polynomial level sets, Trans Amer Math Soc 350: 4757–4773 Ferrera J (1998) Mosco convergence of sequences of homogeneous polynomials. Rev Mat Complut 11: 31–41 Köthe G (1969) Topological Vector Spaces I. Berlin Heidelberg New York: Springer Rockafellar RT, Wets RJB (1998) Variational Analysis. Berlin Heidelberg New York: Springer
dspace.entity.typePublication
relation.isAuthorOfPublication1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3
relation.isAuthorOfPublicationf2a43f90-b551-412e-a95d-2587bbfaa27d
relation.isAuthorOfPublication.latestForDiscovery1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
08.pdf
Size:
128.69 KB
Format:
Adobe Portable Document Format

Collections