Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Kuratowski convergence of holomorphic functions

dc.contributor.authorFerrera Cuesta, Juan
dc.contributor.authorPrieto Yerro, M. Ángeles
dc.date.accessioned2023-06-20T09:34:06Z
dc.date.available2023-06-20T09:34:06Z
dc.date.issued2004
dc.description.abstractThe notion of Kuratowski convergence is applied to describe a kind of convergence in the context of holomorphic functions. We associate it to a convenient topology, explore its relation with the compact-open topology, thus providing a new set theoretic point of view of this classic topology, and present it in the framework of set-valued mappings.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia y Tecnología
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15216
dc.identifier.doi10.1007/s00605-004-0251-6
dc.identifier.issn0026-9255
dc.identifier.officialurlhttp://www.springerlink.com/content/f0pundx05rt17jbb/fulltext.pdf?MUD=MP
dc.identifier.relatedurlhttp://www.springerlink.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49925
dc.issue.number1
dc.journal.titleMonatshefte für Mathematik
dc.language.isoeng
dc.page.final12
dc.page.initial1
dc.publisherSpringer-Verlag, Wien
dc.relation.projectIDBFM 2000=0609
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordHolomorphic functions
dc.subject.keywordConvergence of level sets
dc.subject.keywordKuratowski convergence
dc.subject.keywordSet-valued mappings
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleKuratowski convergence of holomorphic functions
dc.typejournal article
dc.volume.number143
dcterms.referencesBeer G (1989) Convergence of continuous linear functions and their level sets. Arch Math 52: 482–491 Beer G (1993) Topologies on closed and closed convex sets. Dordrecht: Kluwer Conway JB (1978) Functions of One Complex Variable. 2nd ed. Berlin Heidelberg New York: Springer Ferrera J (1996) Convergence of polynomial level sets, Trans Amer Math Soc 350: 4757–4773 Ferrera J (1998) Mosco convergence of sequences of homogeneous polynomials. Rev Mat Complut 11: 31–41 Köthe G (1969) Topological Vector Spaces I. Berlin Heidelberg New York: Springer Rockafellar RT, Wets RJB (1998) Variational Analysis. Berlin Heidelberg New York: Springer
dspace.entity.typePublication
relation.isAuthorOfPublication1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3
relation.isAuthorOfPublicationf2a43f90-b551-412e-a95d-2587bbfaa27d
relation.isAuthorOfPublication.latestForDiscovery1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
08.pdf
Size:
128.69 KB
Format:
Adobe Portable Document Format

Collections