Kuratowski convergence of holomorphic functions
dc.contributor.author | Ferrera Cuesta, Juan | |
dc.contributor.author | Prieto Yerro, M. Ángeles | |
dc.date.accessioned | 2023-06-20T09:34:06Z | |
dc.date.available | 2023-06-20T09:34:06Z | |
dc.date.issued | 2004 | |
dc.description.abstract | The notion of Kuratowski convergence is applied to describe a kind of convergence in the context of holomorphic functions. We associate it to a convenient topology, explore its relation with the compact-open topology, thus providing a new set theoretic point of view of this classic topology, and present it in the framework of set-valued mappings. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia y Tecnología | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15216 | |
dc.identifier.doi | 10.1007/s00605-004-0251-6 | |
dc.identifier.issn | 0026-9255 | |
dc.identifier.officialurl | http://www.springerlink.com/content/f0pundx05rt17jbb/fulltext.pdf?MUD=MP | |
dc.identifier.relatedurl | http://www.springerlink.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/49925 | |
dc.issue.number | 1 | |
dc.journal.title | Monatshefte für Mathematik | |
dc.language.iso | eng | |
dc.page.final | 12 | |
dc.page.initial | 1 | |
dc.publisher | Springer-Verlag, Wien | |
dc.relation.projectID | BFM 2000=0609 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.98 | |
dc.subject.keyword | Holomorphic functions | |
dc.subject.keyword | Convergence of level sets | |
dc.subject.keyword | Kuratowski convergence | |
dc.subject.keyword | Set-valued mappings | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | Kuratowski convergence of holomorphic functions | |
dc.type | journal article | |
dc.volume.number | 143 | |
dcterms.references | Beer G (1989) Convergence of continuous linear functions and their level sets. Arch Math 52: 482–491 Beer G (1993) Topologies on closed and closed convex sets. Dordrecht: Kluwer Conway JB (1978) Functions of One Complex Variable. 2nd ed. Berlin Heidelberg New York: Springer Ferrera J (1996) Convergence of polynomial level sets, Trans Amer Math Soc 350: 4757–4773 Ferrera J (1998) Mosco convergence of sequences of homogeneous polynomials. Rev Mat Complut 11: 31–41 Köthe G (1969) Topological Vector Spaces I. Berlin Heidelberg New York: Springer Rockafellar RT, Wets RJB (1998) Variational Analysis. Berlin Heidelberg New York: Springer | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3 | |
relation.isAuthorOfPublication | f2a43f90-b551-412e-a95d-2587bbfaa27d | |
relation.isAuthorOfPublication.latestForDiscovery | 1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3 |
Download
Original bundle
1 - 1 of 1