Aviso: por motivos de mantenimiento y mejora del repositorio, mañana martes día 13 de mayo, entre las 9 y las 14 horas, Docta Complutense, no funcionará con normalidad. Disculpen las molestias.
 

Spacetime foam as a quantum thermal bath

dc.contributor.authorGaray Elizondo, Luis Javier
dc.date.accessioned2023-06-20T19:20:27Z
dc.date.available2023-06-20T19:20:27Z
dc.date.issued1998-03-23
dc.description© 1998 The American Physical Society. I am very grateful to G. A. Mena Marugán, P. F. González-Díaz, C. Barceló, C. Cabrillo, and J. I. Cirac for helpful discussions. I was supported by funds provided by DGICYT and MEC (Spain) under Contract Adjunct to the Project No. PB94–0107.
dc.description.abstractAn effective model for the spacetime foam is constructed in terms of nonlocal interactions in a classical background. In the weak coupling approximation, the evolution of the low-energy density matrix is determined by a master equation that predicts loss of quantum coherence. Moreover, spacetime foam can be described by a quantum thermal field that, apart from inducing loss of coherence, gives rise to effects such as gravitational Lamb and Stark shifts as well as quantum damping in the evolution of the low-energy observables.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT (Spain)
dc.description.sponsorshipMEC (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29978
dc.identifier.doi10.1103/PhysRevLett.80.2508
dc.identifier.issn0031-9007
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevLett.80.2508
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59544
dc.issue.number12
dc.journal.titlePhysical review letters
dc.language.isoeng
dc.page.final2511
dc.page.initial2508
dc.publisherAmerican Physical Society
dc.relation.projectIDPB94–0107
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordAction uncertainty principle
dc.subject.keywordMixed states
dc.subject.keywordBlack-holes
dc.subject.keywordPure states
dc.subject.keywordGravity
dc.subject.keywordEvolution
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleSpacetime foam as a quantum thermal bath
dc.typejournal article
dc.volume.number80
dcterms.references[1] J. A. Wheeler, in Relativity, Groups and Topology, edited by B. S. DeWitt and C. M. DeWitt (Gordon and Breach, New York, 1964). For a recent approach, see S. Carlip, Phys. Rev. Lett. 79, 4071 (1997). [2] S. W. Hawking, Phys. Rev. D 37, 904 (1988). [3] S. Coleman, Nucl. Phys. B307, 867 (1988). [4] S. W. Hawking, Phys. Rev. D 53, 3099 (1996). [5] L. J. Garay, Int. J. Mod. Phys. A 10, 145 (1995). [6] M. A. Markov, Institute for Nuclear Research Report No. P-0187, Moscow, 1980; Institute for Nuclear Research Report No. P-0208, Moscow, 1981; as quoted in H.-H. Borzeszkowski and H.-J. Treder, The Meaning of Quantum Gravity (Reidel, Dordrecht, 1988). [7] M. B. Mensky, Phys. Lett. A 155, 229 (1991); 162, 219 (1992). [8] S. W. Hawking, Commun. Math. Phys. 87, 395 (1982). [9] C. W. Gardiner, Quantum Noise (Springer-Verlag, Berlin, 1991). [10] W. G. Unruh and R. M. Wald, Phys. Rev. D 52, 2176 (1995). [11] D. A. Eliezer and R. P. Woodard, Nucl. Phys. B325, 389 (1989). [12] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford University Press, Oxford, 1996), 3rd. ed. [13] T. Banks, L. Susskind, and M. E. Peskin, Nucl. Phys. B244, 125 (1984). [14] M. Reed and B. Simon, Methods of Modern Mathematical Physics I. Functional Analysis (Academic Press, New York, 1972).
dspace.entity.typePublication
relation.isAuthorOfPublication5638c18d-1c35-40d2-8b77-eb558c27585e
relation.isAuthorOfPublication.latestForDiscovery5638c18d-1c35-40d2-8b77-eb558c27585e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Garay40.pdf
Size:
146.88 KB
Format:
Adobe Portable Document Format

Collections