Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Technical Evaluation of Mechanical Recycling of PLA 3D Printing Wastes

Citation

Abstract

The importance of 3D printing is growing rapidly. A recent example of this increasing importance involves the fight against the Covid-19 pandemic, in which 3D printing has helped to overcome the shortage of critical supplies. However, 3D printing generates large amounts of plastic waste that could pose an environmental problem, thus making it necessary to find methods for the correct management of such wastes. The combination of additive manufacturing and distributed mechanical recycling can contribute to the development of a more circular economy. The main goals of this work were to characterize the poly(lactic acid) (PLA) wastes generated in 3D printing processes and evaluate the effect of their heterogeneity on the technical feasibility of mechanical recycling. Two PLA 3D printing wastes were used: waste coming from a well-known PLA grade, and a mixture of PLA 3D printing residues coming from an association of coronamakers in Madrid. Recycled material obtained from the waste of a well-known PLA grade shows good properties, similar to those for non-used material. However, the recycled material obtained from mixed PLA waste shows lower viscosity values, higher crystallization ability and less transparency. These results highlight that special attention should be paid to the sorting and characterization of the 3D wastes, to obtain recycled materials with good properties.

Research Projects

Organizational Units

Journal Issue

Description

This article belongs to the Proceedings of The First International Conference on “Green” Polymer Materials 2020.

Keywords

Collections