Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

An Example on Composite Differentiable Functions in Infinite Dimensions

dc.contributor.authorJaramillo Aguado, Jesús Ángel
dc.date.accessioned2023-06-20T17:01:39Z
dc.date.available2023-06-20T17:01:39Z
dc.date.issued1989-08
dc.description.abstractWe present an example showing that a classical result due to Glaeser about the closedness of composition subalgebras of infinitely differeuniable functions cannot be extended to the case of weakly uniformly differentiable functions on Banach spaces
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipCAICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16854
dc.identifier.doi10.1017/S000497270000352X
dc.identifier.issn0004-9727
dc.identifier.officialurlhttp://journals.cambridge.org/abstract_S000497270000352X
dc.identifier.relatedurlhttp://www.cambridge.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57649
dc.issue.number1
dc.journal.titleBulletin of the Australian Mathematical Society
dc.language.isoeng
dc.page.final95
dc.page.initial91
dc.publisherAustralian Mathematics Publ Assoc Inc
dc.relation.projectID2197/83
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordWeakly uniformly differentiable functions
dc.subject.keywordGlaeser theorem
dc.subject.keywordreal-analytic mapping
dc.subject.keywordFréchet topology of uniform convergence on compact subsets of functions and all their derivatives
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleAn Example on Composite Differentiable Functions in Infinite Dimensions
dc.typejournal article
dc.volume.number40
dcterms.referencesR. Aron, J. G6mez and J. Llavona, 'Homomorphisms between algebras of differentiable functions in infinite dimensions', Mich. Math. J. 35 (1988), 163-178. R. Aron and J. Prolla, 'Polynomial approximations of differentiable functions on Banach spaces', J. Reine Angew. Math. 313 (1980), 195-216. G. Glaeser, 'Fonctions composees differentiables', Ann. of Math. 77 (1963), 193-209. H.H. Keller, Differential Calculus in Locally Convex Spaces, Lecture Notes in Math 417 (Sptinger-Verlag, Berlin, Heidelberg, New York, Tokyo, 1974). J. Llavona, Approximation of Continuously Differentiable Functions, North Holland Math. Studies 130, 1986. S. Yamamuro, Differential Calculus in Topological Linear Spaces, Lecture Notes in Math. 374 (Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1974).
dspace.entity.typePublication
relation.isAuthorOfPublication8b6e753b-df15-44ff-8042-74de90b4e3e9
relation.isAuthorOfPublication.latestForDiscovery8b6e753b-df15-44ff-8042-74de90b4e3e9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Jaramillo45.pdf
Size:
225.13 KB
Format:
Adobe Portable Document Format

Collections