Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Producción de elementos fotónicos mediante escritura directa con pulsos láser ultracortos (Direct writing photonic devices production by ultrashort laser pulses)

dc.contributor.advisorSolís Céspedes, Francisco Javier
dc.contributor.advisorRuiz de la Cruz, Alexandro
dc.contributor.advisorPiquero Sanz, Gemma
dc.contributor.authorDel Hoyo Muñoz, Jesús
dc.date.accessioned2023-06-20T06:10:49Z
dc.date.available2023-06-20T06:10:49Z
dc.date.issued2011
dc.descriptionMáster de Física Fundamental. Facultad de Ciencias Físicas. Curso 2010-2011
dc.description.abstractEn este trabajo se profundiza en diferentes aspectos del procesado de elementos fotónicos en dieléctricos mediante pulsos láser ultracortos a baja y alta frecuencia de repetición. En el primer caso, se ha desarrollado una herramienta de modelización para evaluar el perfil de depósito de energía de un haz durante su propagación no-lineal en el seno del material. En el segundo caso, se han producido guías de onda activas de altas prestaciones a alta frecuencia de repetición en vidrios de fosfato. [ABSTRACT] This work explores different aspects of the processing of photonic elements in dielectrics using ultrashort laser pulses at low and high repetition rate. In the first case, it has been developed a modeling tool capable of evaluate the energy deposition profile inside non-­linear materials. In the second case, high performance active waveguides have been produced inside phosphate glasses.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/13451
dc.identifier.urihttps://hdl.handle.net/20.500.14352/46332
dc.language.isospa
dc.page.total29
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.cdu535.57
dc.subject.cdu535.374
dc.subject.keywordGuías de Onda
dc.subject.keywordPulsos Láser Ultracortos
dc.subject.keywordPropagación No Lineal
dc.subject.keywordAberraciones Ópticas
dc.subject.keywordWaveguides
dc.subject.keywordUltrashort Laser Pulses
dc.subject.keywordNon-linear Propagation
dc.subject.keywordOptical Aberrations
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleProducción de elementos fotónicos mediante escritura directa con pulsos láser ultracortos (Direct writing photonic devices production by ultrashort laser pulses)
dc.typemaster thesis
dcterms.references1. R.R. Gattass, E. Mazur, “Femtosecond laser micromachining in transparent materials”, Nat. Phot. 2, 219-25 (2008). 2. M. Ams, G.D. Marshall, P. Dekker, J.A. Piper and M.J. Withford, “Ultrafast laser written active devices”, Laser & Photon. Rev. 3, 535–544 (2009). 3. G. Della Valle, R. Osellame, P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses”, J. Opt. A: Pure Appl. Opt. 11 (2009), 013001, (18pp). 4. S.S. Mao, F. Quéré, S. Guizard, X. Mao, R.E. Russo, G. Petite, P. Martin, “Dynamics of femtosecond laser interactions with dielectrics”, App. Phys. A 79, 1695–1709 (2004). 5. A.G. Okhrimchuk, A.V. Shestakov, I. Khrushchev, J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG: Nd3+ cristal by femtosecond laser writing”, Opt. Lett. 30, 2248­5(2005). 6. D. Homoelle, S. Wielandy, A.L. Gaeta, N.F. Borrelli, C. Smith, “Infrared photosensitivity in silicaglasses exposed to femtosecond laser pulses”, Opt. Lett. 24, 1311-3 (1999). 7. V. Diez-­‐Blanco, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, J. Solis, “Deep surface waveguides with circular cross section produced by femtosecond laser writing”, App. Phys. Lett. 91, 051104 (2007). 8. J. Burghoff, C. Grebing, S. Nolte, A. Tünermann, “Efficient frequency doubling in femtosecond laser-­written waveguides in lithium niobate”, App. Phys. Lett., 89, 081108 (2006). 9. R.L. Sutherland, D.G. McLean, S. Kirkpatrick, “Handbook of nonlinear optics”, Marcel Dekker, 2003. 10. W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernández, J. Solis, “Ultrafast Imaging of Transient Electronic Plasmas Produced in Conditions of Femtosecond Waveguide Writing in Dielectrics”, Appl.Phys.Lett. 93, 121109 (2008). 11. D.M. Rayner, A. Naumov, P.B. Corkum, “Ultrashort pulse non-­linear optical absorption in transparent media”, Opt. Exp. 13 3208 (2005). 12. A. Mermillod-­Blondin, I. Burakov, Yu. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. Hertel, R. Stoian, “Flipping de sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates” Phys. Rev.B 77, 1-­8 (2008). 13. L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, B. Rethfeld, T. Baumert, “Material processing of dielectrics with temporally asimetric shaped femtosecond laser pulses on nanometer scala”, App. Phys. A 92, 749-­753 (2008). 14. A. Präkelt, M. Wollenhaupt, A. Assion, Ch. Horn, C. Sarpe-Tudoran, M. Winter, T. Baumert, “Compact, robust and flexible setup for femtosecond pulse shaping”, Review of Scientific Instruments 74, 4950 (2003) 15. D. Puerto, J. Siegel, W. Gawelda, M. Galvan-­Sosa, L. Ehrentraut, J. Bonse, and J. Solis,“Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics”, J. Opt. Soc. Am. B 27, 1065 (2010). 16. C. Mauclair, A. Mermillod-­Blondin, N Huot, E. Audouard,R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction”, Opt. Exp. 16, 5481-­92 (2008). 17. S. M. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate”, Opt. Exp.13, 4708-­16 (2005). 18. J.H. Campbell, T.I. Suratwala, “Nd-doped phosfate glasses for high energy/high peak power lasers”, Journal of Non-­Crystalline Solids 263-­264 (2000). 19. J.W. Goodman, “Introduction to Fourier Optics”, Mc Graw Hill International Editions, 1996. 20. A. Pasquazi, S. Stivala, G. Assanto, J. Gonzalo, J. Solis, C.N. Alfonso, “Near-­infrared spatial solitons in heavy metal oxide glasses”, Opt. Lett. 32 2103-­05. 21. E.J. Grace, “Generalized Adaptative Fast Fourier Evolver, a toolbox for solving evolutionary nonlinear Partial Differential Equations”, http://www.mathworks.com/matlabcentral/fileexchange/24016.GAFFE, 2009
dspace.entity.typePublication
relation.isAuthorOfPublicationeaed2bb8-3f7e-4586-a2f3-29e28ae50394
relation.isAuthorOfPublication.latestForDiscoveryeaed2bb8-3f7e-4586-a2f3-29e28ae50394

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Jesus_del_Hoyo_Muñoz.pdf
Size:
41.51 MB
Format:
Adobe Portable Document Format