Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A study of seating suspension system vibration isolation using a hybrid method of an artificial neural network and response surface modelling

dc.contributor.authorZhao, Yuli
dc.contributor.authorKhayet Souhaimi, Mohamed
dc.contributor.authorWang, Xu
dc.date.accessioned2024-04-09T08:59:04Z
dc.date.available2024-04-09T08:59:04Z
dc.date.issued2024-01-08
dc.description.abstractA reliable prediction model can greatly contribute to the research of car seating system vibration control. The novelty of this paper lies in the development of a hybrid method of an artificial neural network (ANN) and response surface methodology (RSM) to predict the peak seat-to-head transmissibility ratio of a seating suspension system and to evaluate its ride comfort for different seat design parameters. Additionally, this method can remove the experimental design of the RSM model. In this paper, four seat design parameters are selected as input parameters and arranged using the central composite design method. The peak transmissibility ratio from seat to head at 4 Hz is chosen as the response target output value. To illustrate this hybrid method, the response target output value of the peak transmissibility ratio is calculated from the frequency response of a five-degrees-of-freedom (5-DOF) lumped-parameter biodynamic seating suspension model. The input design parameters and the response target output values are used to train an ANN to establish the relationship between the seat design parameters and the peak transmissibility ratio. At the same time, the input design parameters and the response target output values predicted by the ANN are used to develop the relationship between the seat design parameters and the peak transmissibility ratio using the response surface method and linear regression models. The hybrid of the ANN and response surface methods makes the planning or design of experiments not essential. The hybrid model of the ANN and response surface method is more accurate and convenient than a linear regression model for the study of seating system vibration isolation.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipAustralian Research Council Linkage Project
dc.description.statuspub
dc.identifier.citationZhao, Y.; Khayet, M.; Wang, X. A Study of Seating Suspension System Vibration Isolation Using a Hybrid Method of an Artificial Neural Network and Response Surface Modelling. Vibration 2024, 7, 53-63. https://doi.org/10.3390/vibration7010003
dc.identifier.doi10.3390/vibration7010003
dc.identifier.essn2571-631X
dc.identifier.officialurlhttps://www.mdpi.com/2571-631X/7/1/3
dc.identifier.urihttps://hdl.handle.net/20.500.14352/102858
dc.issue.number1
dc.journal.titleVibration
dc.language.isoeng
dc.page.final63
dc.page.initial53
dc.publisherMDPI
dc.relation.projectIDLP160100132
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu536
dc.subject.keywordSystem transmissibility
dc.subject.keywordANN
dc.subject.keywordResponse surface method
dc.subject.keywordLinear regression
dc.subject.keywordHybrid
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleA study of seating suspension system vibration isolation using a hybrid method of an artificial neural network and response surface modelling
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number7
dspace.entity.typePublication
relation.isAuthorOfPublication8e32e718-0959-4e6c-9e04-891d3d43d640
relation.isAuthorOfPublication.latestForDiscovery8e32e718-0959-4e6c-9e04-891d3d43d640

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
vibration-07-00003.pdf
Size:
741.59 KB
Format:
Adobe Portable Document Format

Collections