Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Parametric Pipelined k-Means Implementation for Hyperspectral Processing on Spacecraft Embedded FPGA

dc.contributor.authorGonzález, Carlos
dc.contributor.authorMorcillo Salgado, Borja
dc.contributor.authorBascones García, Daniel
dc.contributor.authorMendías Cuadros, José Manuel
dc.contributor.authorMozos Muñoz, Daniel
dc.date.accessioned2025-01-29T14:53:51Z
dc.date.available2025-01-29T14:53:51Z
dc.date.issued2024-05-14
dc.description.abstractk-means stands out as one of the most common clustering algorithms, widely employed for classification in hyperspectral imaging. In this context, large amounts of data are gathered by sensors that are embedded into satellites with strict constraints in terms of power consumption, weight, physical space or radiation tolerance. Since communication bandwidth is also limited, data processing must be performed on board. However, meeting all those constraints also entails a significant tradeoff with computing performance. The aim of this work is clustering hyperspectral images in real time. Custom hardware has been designed with the objective of reducing overhead and maximizing performance, by exploiting several acceleration techniques. The implementation targets a space-grade Xilinx Kintex FPGA, which features low power consumption and is shielded against radiation. The design has a deep pipelined architecture, able to process all bands of each hyperspectral pixel in parallel. In consequence, it attains a throughput of 100 M hyperspectral pixels per second, even with a discrete use of FPGA resources. In addition, it is also fully parametric, with on-the-fly adaptation to different kinds of images and clustering configurations. Compared to previous implementations, ours takes advantage of a fully RTL design that avoids CPU bottlenecks and HLS design overheads. It also has a fixed throughput regardless of image or clustering properties, while having lower FPGA resource usage than performancewise equivalent implementations.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationB. Morcillo, D. Báscones, C. González, J. M. Mendías and D. Mozos, "Parametric Pipelined k-Means Implementation for Hyperspectral Processing on Spacecraft Embedded FPGA," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 17, pp. 15927-15941, 2024, doi: 10.1109/JSTARS.2024.3400883.
dc.identifier.doidoi.org/10.1109/JSTARS.2024.3400883.
dc.identifier.officialurlhttps://doi.org/10.1109/JSTARS.2024.3400883
dc.identifier.urihttps://hdl.handle.net/20.500.14352/116948
dc.journal.titleIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
dc.language.isoeng
dc.page.final15941
dc.page.initial15927
dc.publisherIEEE
dc.rights.accessRightsopen access
dc.subject.keywordHyperspectral images
dc.subject.keywordk.means
dc.subject.keywordFPGA
dc.subject.keywordHardware implementation
dc.subject.ucmCiencias
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleParametric Pipelined k-Means Implementation for Hyperspectral Processing on Spacecraft Embedded FPGA
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number17
dspace.entity.typePublication
relation.isAuthorOfPublication83c247bf-c53f-46ce-9f58-63451829285a
relation.isAuthorOfPublication7091b4d5-39d3-464a-be38-0863f757e2c9
relation.isAuthorOfPublicationd8c47930-3f7e-4046-b4d9-a59759643011
relation.isAuthorOfPublication4c67f647-780c-4c6a-84dd-5962fb0a6260
relation.isAuthorOfPublication.latestForDiscovery83c247bf-c53f-46ce-9f58-63451829285a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
IEEE_JSTAEORS_2024.pdf
Size:
3.6 MB
Format:
Adobe Portable Document Format

Collections