Swelling properties of alkali-metal doped polymeric anion-exchange membranes in alcohol media for application in fuel cells
dc.contributor.author | Lain, L. | |
dc.contributor.author | Barragán García, Vicenta María | |
dc.date.accessioned | 2023-06-17T23:53:58Z | |
dc.date.available | 2023-06-17T23:53:58Z | |
dc.date.issued | 2016-08-24 | |
dc.description | © 2016 Hydrogen Energy Publications. © Published by Elsevier Ltd. Financial support of this work by Banco de Santander and Universidad Complutense de Madrid within the framework of Project 910358 UCM Research Group-GR3/14 is gratefully acknowledged. | |
dc.description.abstract | Swelling properties of four commercial anion-exchange membranes with different structure have been analyzed in several hydro-organic media. With this target, the liquid uptake and the surface expansion of the membranes in contact with different pure liquids, water and alcohols (methanol, ethanol and 1-propanol), and with water alcohol mixtures with different concentrations have been experimentally determined in presence and in absence of an alkaline medium (LiOH, NaOH and KOH of different concentrations). The alkali-metal doping effect on the membrane water uptake has also been investigated, analyzing the influence of the hydroxide concentration and the presence of an alcohol in the doping solution. The results show that the membrane structure plays an essential role in the influence that alcohol nature and alkaline media has on the selective properties of the membrane. The heterogeneous membranes, with lower density, show higher liquid uptakes and dimensional changes than the homogeneous membranes, regardless of the doping conditions. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved. | |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Banco Santander Central Hispano (BSCH) | |
dc.description.sponsorship | Universidad Complutense de Madrid (UCM) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/39748 | |
dc.identifier.doi | 10.1016/j.ijhydene.2016.05.283 | |
dc.identifier.issn | 0360-3199 | |
dc.identifier.officialurl | http://dx.doi.org/10.1016/j.ijhydene.2016.05.283 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/18989 | |
dc.issue.number | 32 | |
dc.journal.title | International journal of hydrogen energy | |
dc.language.iso | eng | |
dc.page.final | 14170 | |
dc.page.initial | 14160 | |
dc.publisher | Pergamon-Elsevier Science Ltd | |
dc.relation.projectID | UCM (910358) | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 536 | |
dc.subject.keyword | Transport-properties | |
dc.subject.keyword | Aqueous-solutions | |
dc.subject.keyword | Water-uptake | |
dc.subject.keyword | Methanol | |
dc.subject.keyword | Densities | |
dc.subject.keyword | Viscosities | |
dc.subject.keyword | Mixtures | |
dc.subject.ucm | Termodinámica | |
dc.subject.unesco | 2213 Termodinámica | |
dc.title | Swelling properties of alkali-metal doped polymeric anion-exchange membranes in alcohol media for application in fuel cells | |
dc.type | journal article | |
dc.volume.number | 41 | |
dcterms.references | [1] Dyer K. Fuel cells for portable applications. J Power Sources. 2002;106: 31-34. [2] Antolini E, González ER. Alkaline direct alcohol fuel cells. J Power Sources 2010;195:3431-3450. [3] García Nieto D, Barragán VM. A comparative study of the electro-osmotic behavior of cation and anion exchange membranes in alcohol-water media. Electrochim Acta 2015;184:166-176. [4] Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z. Alkaline direct alcohol fuel cells using an anion exchange membrane. J Power Sources 2005;150:27-31. [5] Yu EH, Krewer U, Scott K. Principles and Materials Aspects of direct alkaline alcohol fuel cells. Energies 2010;3:1499-1528. [6] Merle G, Wessling M, Nijmeijer K. Anion exchange membranes for alkaline fuel cells: A review. J Membrane Sci 2011;377:1-35. [7] Cheng J, He G, Zhang F. A mini-review on anion exchange membranes for fuel cell applications: stability issue and addressing strategies. Int J Hydrogen Energ 2015;40:7348-7360. [8] Agel E, Bouet J, Fauvarque JF. Characterization and use of anionic membranes for alkaline fuel cells. J Power Sources 2001;101:267-274. [9] Kreuer KD. Ion conducting membranes for fuel cells and other electrochemical devices. Chem Mater 2014;26:361-380. [10] Carmo M, Frizt DL, Merge J, Stolen D. A comprehensive review on PEM water electrolysis. Int J Hydrogen Energ 2013;38:4901-4934. [11] Veerman J, Jong RM, Saakes M, Metz SJ, Harmsen GJ. Reverse electrodialysis: Comparison of six commercial membrane pairs on the themodynamic efficiency and power density. J Membrane Sci 2009;343:7-15. [12] Balster J, Pünt I, Stamatialis DF, Lammers K, Verver AB, Wessling M. Electrochemical acidification of milk by whey desalination. J Membrane Sci 2007;303:213-220. [13] Souilah O, Akretche DE, Amara M. Water reuse of an industrial effluent by mean of electrodeionisation. Desalination 2004;167:49-54. [14] Karas F, Hnát J, Paidar M, Schauer J, Bouzek K. Determination of the ion-exchange capacity of anion-elective membranes. Int J Hydrogen Energ 2014;39:5054-5062. [15] Li YS, Zhao TS, Yang WW. Measurements of water uptake and transport properties in anion-exchange membranes. Int J Hydrogen Energ 2010;35:5656-5665. [16] An L, Zhao TS, Wu QX, Zeng L. Comparison of different types of membranes in alkaline direct ethanol fuel cells. Int J Hydrogen Energ 2012:37:14536-14542. [17] Wang X, McClure JP, Fedkiw PS. Transport properties of proton- and hydroxideexchange membranes for fuel cells. Electrochim Acta 2012;79:126-132. [18] Han KW, Ko KH, Abu-Hakmeh K, Bae C, Sohn YJ, Jang SS. Molecular dynamics simulation study of a polysulfone-based anion exchange membrane in comparison with the proton exchange membrane. J Phys Chem C 2014;118:12577-12587. [19] Gao TZ, Kandel BS, Oh SJ. Properties of poly(vynil alcohol)-based composite membranes for direct methanol fuel cell applications. J Chin Chem Soc-Taip 2007;54:1485-1494. [20] Verjulio RW, Santander J, Sabaté N, Esquivel JP, Torres Herrero N, Habrioux A, Alonso Vante N. Fabrication and evaluation of a passive alkaline membrane micro direct methanol fuel cell. Int J Hydrogen Energ 2014:39:5406-5413. [21] http://www.tokuyama-a.com/ion_exchange.php; 2003 [accessed 12.03.16]. [22] http://www.ralex.eu/Membrany/Uvod.aspx; 2003 [accessed 12.03.16]. [23] http://www.eetcorp.com/lts/membraneproperties.pdf; 2003 [accessed 12.03.16]. [24] http://www.fumatech.com/NR/rdonlyres/EEC52087-35BF-4F88-A682 C2306172FC93/0/5667_Fumatech_fumasep_Einzelseiten.pdf; 2003 [accessed 12.03.16]. [25] González B, Calvar N, Gómez E, Domínguez A. Density, dynamic viscosity, and derived properties of binary mixtures of methanol or ethanol with water, ethyl acetate, and methyl acetate at T = 293.15, 298.15, and 303.15 K. J Chem Thermodyn 2007:39:1578-1588. [26] Pang FM, Seng CE, Teng TT, Ibrahim MH. Densities and viscosities of aqueous solutions of 1-propanol and 2-propanol at temperatures from 293.15 K to 333.15 K. J Mol Liq 2007:136:71-78. [27] Strathmann H. Ion-Exchange Membrane Separation Processes. In: Membrane Science and Technology Series, Amsterdam: Elsevier; 2004. [28] Li YS, Zhao TS, Yang WW. Measurements of water uptake and transport properties in anion-exchange membranes. Int J Hydrogen Energ 2010;35:5656-5665. [29] Zeng L, Zhao TS, An L, Zhao G, Yan XH. Physicochemical properties of alkaline doped polybenzimidazole membranes for anion exchange membrane fuel cells. J Membrane Sci 2015;493:340-348. [30] Randová A, Hovorka S, Izák P, Bartovská L. Swelling of Nafion in methanol-waterinorganic salt ternary mixtures. J Electroanal Chem 2008;616:117-121. [31] Morris DR, Sun X. Water-sorption and transport properties of Nafion 117. J Appl Polym Sci 1993;50:1445-1442. [32] Godino MP, Barragán VM, Villaluenga JPG, Izquierdo Gil MP, Ruiz Bauzá C, Seoane B. Liquid transport through sulfonated cation-exchange membranes for different water-alcohol solutions. Chem Ing 2010;162:643-648. [33] Barragán VM, Muñoz S. Influence of a Microwave irradiation on the swelling and permeation properties of a Nafion membrane. J Membrane Sep Technol 2015;4:32-39. [34] Mizutani Y. Structure of ion exchange membranes. J Membrane Sci 1990;49:212-144. [35] Lehmani A, Turq P, Périé M, Périé J, Simonin J-P. Ion transport in Nafion 117 membrane. J Electroanal Chem 1997;428:81-89. [36] Agel E, Bouet J, Fauvarque JF. Characterization and use of anionic membranes for alkaline fuel cells. J Power Sources 2001;101:267-274. [37] Barragán VM, Pérez Haro MJ. Correlations between water uptake and effective fixed charge concentration at high univalent electrolyte concentrations in sulfonated polymer cation-exchange membranes with different morphology. Electrochim Acta 2011;56:8630-8637. [38] http://www.solvaychemicals.com; 2003 [accessed 12.03.16]. [39] Akerlof G, Bender P. The density of aqueous solution of potassium hydroxide. J Am Chem Soc 1941;63:1085-1088. [40] Sipos PM, Hefter G, May PM. Viscosities and densities of highly concentrated aqueous MOH solutions (M+= Na+, K+, Li+ Cs+, (CH3)4N+) at 25ºC. J Chem Eng Data 2000;45:613-617. [41] Corti HR, Fernández Prini R, Svarc F. Densities and partial molar volumes of aqueous solutions of lithium, sodium and potassium hydroxides up to 250ºC. J Solution Chem 1990;19:793-809. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | d2c307ae-39ce-419e-a520-2e71b0d84e09 | |
relation.isAuthorOfPublication.latestForDiscovery | d2c307ae-39ce-419e-a520-2e71b0d84e09 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Barragán03postprint+embargo 24_08_18.pdf
- Size:
- 352.54 KB
- Format:
- Adobe Portable Document Format