Global characterization of variational first-order quasi-linear equations.
dc.contributor.author | Muñoz Masqué, Jaime | |
dc.contributor.author | Pozo Coronado, Luis Miguel | |
dc.date.accessioned | 2023-06-20T09:43:06Z | |
dc.date.available | 2023-06-20T09:43:06Z | |
dc.date.issued | 2005 | |
dc.description.abstract | The global inverse problem of the calculus of variations for the particular case of first-order quasi-linear PDEs is solved. Some examples in the field theory are discussed. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Educaci6n y Ciencia of Spain | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17486 | |
dc.identifier.doi | 10.1016/S0034-4877(05)80039-4 | |
dc.identifier.issn | 0034-4877 | |
dc.identifier.officialurl | http://dx.doi.org/10.1016/S0034-4877(05)80039-4/science/article/pii/S0034487705800394 | |
dc.identifier.relatedurl | http://dx.doi.org/10.1016/S0034-4877(05)80039-4 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50240 | |
dc.journal.title | Reports on Mathematical Physics | |
dc.language.iso | eng | |
dc.page.final | 38 | |
dc.page.initial | 23 | |
dc.publisher | Elsevier | |
dc.relation.projectID | BFM2002-00141. | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.7 | |
dc.subject.cdu | 517.98 | |
dc.subject.keyword | Affine Lagrangian | |
dc.subject.keyword | Euler-Lagrange equations | |
dc.subject.keyword | First-order quasi-linear equations | |
dc.subject.keyword | Jet bundles | |
dc.subject.keyword | Poincar6-Cartan form bundles | |
dc.subject.keyword | Poincar6-Cartan form. | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Global characterization of variational first-order quasi-linear equations. | |
dc.type | journal article | |
dc.volume.number | 56 | |
dcterms.references | D. Bleecker: Gauge Theory and Variational Principles,Addison-Wesley Publishing Company, Inc., Reading,MA 1981. Th. Frankel: The Geometry of Physics, Cambridge University Press, Cambridge, UK 1997. H. Goldschmidt and S. Sternberg: The Hamilton-Cartan formalism in the Calculus of Variations, Ann. Inst.Fourier, Grenoble 23 (1973), 203-267. J. Grifone, J. Mufioz Masqu6 and L. M. Pozo Coronado:Variational first-order quasi-linear equations, L. Kozma, P. T. Nagy and L. Tamisy (Eds.), Proc. of the Colloquium on Differential Geometry, Steps in Differential Geometry, July 25-30, 2000, Debrecen (Hungary), Institute of Mathematics and Informatics, University of Debrecen, A. Hakovi and O. Krupkovai: Variational first-order partial differential equations, J. Diff. Equations 191 (2003), 67-89. S. Kobayashi and K. Nomizu: Foundations of Differential Geometry, Volume I, Wiley, New York 1963. J. E. Marsden and S. Shkoller: Multisymplectic geometry, covariant Hamiltonians, and water waves, Math.Proc. Cambridge Philos. Soc. 125 (1999), no. 3, 553-575. J. Mufioz Masque and E. Rosado Maria: Invariant variational problems on linear frame bundles, Z Phys. A:Math. Gen. 35 (2002), 2013-2036. D. J. Saunders: The Geometry of Jet Bundles, Cambridge University Press, Cambridge, UK 1989. S. Sternberg: Lectures on Differential Geometry, Second edition, with an appendix by Sternberg and Victor W. Guillemin, Chelsea Publishing Co., New York 1983. J. J. Stawianowski: Field of linear frames as a fundamental self-interacting system, Rep. Math. Phys. 22 (1985), 323-371. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 0124d449-632e-4dc8-9651-eb1975f330ab | |
relation.isAuthorOfPublication.latestForDiscovery | 0124d449-632e-4dc8-9651-eb1975f330ab |
Download
Original bundle
1 - 1 of 1