Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

bioNMF: a versatile tool for non-negative matrix factorization in biology

dc.contributor.authorPascual Montano, Alberto
dc.contributor.authorCarmona Saez, Pedro
dc.contributor.authorChagoyen, Mónica
dc.contributor.authorTirado Fernández, José Francisco
dc.contributor.authorCarazo, José M.
dc.contributor.authorPascual Marqui, Roberto. D.
dc.date.accessioned2023-06-20T11:11:44Z
dc.date.available2023-06-20T11:11:44Z
dc.date.issued2006-07-28
dc.description© 2006 Pascual-Montano et a. This work has been partially funded by the Spanish grants CICYT BFU2004-00217/BMC, GEN2003-20235-c05-05, CYTED-505PI0058, TIN2005-5619, PR27/05-13964-BSCH and a collaborative grant between the Spanish CSIC and the Canadian NRC (CSIC-050402040003). PCS is recipient of a grant from CAM. APM acknowledges the support of the Spanish Ramón y Cajal program.
dc.description.abstractMedical imaging has become an absolutely essential diagnostic tool for clinical practices; at present, pathologies can be detected with an earliness never before known. Its use has not only been relegated to the field of radiology but also, increasingly, to computer-based imaging processes prior to surgery. Motion analysis, in particular, plays an important role in analyzing activities or behaviors of live objects in medicine. This short paper presents several low-cost hardware implementation approaches for the new generation of tablets and/or smartphones for estimating motion compensation and segmentation in medical images. These systems have been optimized for breast cancer diagnosis using magnetic resonance imaging technology with several advantages over traditional X-ray mammography, for example, obtaining patient information during a short period. This paper also addresses the challenge of offering a medical tool that runs on widespread portable devices, both on tablets and/or smartphones to aid in patient diagnostics.
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT (Spain)
dc.description.sponsorshipCSIC (Spain)
dc.description.sponsorshipCanadian NRC
dc.description.sponsorshipCAM
dc.description.sponsorshipSpanish Ramón y Cajal program
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/36321
dc.identifier.doi10.1186/1471-2105-7-366
dc.identifier.issn1471-2105
dc.identifier.officialurlhttp://dx.doi.org/10.1186/1471-2105-7-366
dc.identifier.relatedurlhttp://bmcbioinformatics.biomedcentral.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51816
dc.journal.titleBMC Bioinformatics
dc.language.isoeng
dc.publisherBiomed Central LTD
dc.relation.projectIDBFU2004- 00217/BMC
dc.relation.projectIDGEN2003-20235-c05-05
dc.relation.projectIDCYTED-505PI0058
dc.relation.projectIDTIN2005-5619
dc.relation.projectIDPR27/05-13964-BSCH
dc.relation.projectIDCSIC-050402040003
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu004
dc.subject.keywordGene expression data
dc.subject.keywordIndependent component analysis
dc.subject.keywordMicroarray data
dc.subject.keywordClass discovery
dc.subject.keywordProfiles
dc.subject.keywordIdentification
dc.subject.keywordAlgorithms
dc.subject.keywordFeatures
dc.subject.keywordCancer
dc.subject.ucmInformática (Informática)
dc.subject.unesco1203.17 Informática
dc.titlebioNMF: a versatile tool for non-negative matrix factorization in biology
dc.typejournal article
dc.volume.number7
dcterms.references1. Wall ME, Dyck PA, Brettin TS: SVDMAN – singular value decomposition analysis of microarray data. Bioinformatics 2001, 17:566-8. 2. Lee SI, Batzoglou S: Application of independent component analysis to microarrays. Genome Biol 2003, 4:R76. 3. Dai JJ, Lieu L, Rocke D: Dimension reduction for classification with gene expression microarray data. Stat Appl Genet Mol Biol 2006, 5:Article6. 4. Jansen JJ, Hoefsloot HC, Boelens HF, van der Greef J, Smilde AK: Analysis of longitudinal metabolomics data. Bioinformatics 2004, 20:2438-46. 5. Scholz M, Gatzek S, Sterling A, Fiehn O, Selbig J: Metabolite fingerprinting: detecting biological features by independent component analysis. Bioinformatics 2004, 20:2447-54. 6. Lee KR, Lin X, Park DC, Eslava S: Megavariate data analysis of mass spectrometric proteomics data using latent variable projection method. Proteomics 2003, 3:1680-6. 7. Lee DD, Seung HS: Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401:788-91. 8. Girolami M, Breitling R: Biologically valid linear factor models of gene expression. Bioinformatics 2004, 20:3021-33. 9. Brunet JP, Tamayo P, Golub TR, Mesirov JP: Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci USA 2004, 101:4164-9. 10. Carmona-Saez P, Pascual-Marqui RD, Tirado F, Carazo JM, Pascual- Montano A: Biclustering of gene expression data by nonsmooth non-negative matrix factorization. BMC Bioinformatics 2006, 7:78. 11. Carrasco DR, Tonon G, Huang Y, Zhang Y, Sinha R, Feng B, Stewart JP, Zhan F, Khatry D, Protopopova M, et al.: High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell 2006, 9:313-25. 12. Wang G, Kossenkov AV, Ochs MF: LS-NMF: a modified non-negative matrix factorization algorithm utilizing uncertainty estimates. BMC Bioinformatics 2006, 7:175. 13. Kim PM, Tidor B: Subsystem identification through dimensionality reduction of large-scale gene expression data. Genome Res 2003, 13:1706-18. 14. Gao Y, Church G: Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics 2005, 21:3970-5. 15. Inamura K, Fujiwara T, Hoshida Y, Isagawa T, Jones MH, Virtanen C, Shimane M, Satoh Y, Okumura S, Nakagawa K, et al.: Two subclasses of lung squamous cell carcinoma with different gene expression profiles and prognosis identified by hierarchical clustering and non-negative matrix factorization. Oncogene 2005, 24:7105-13. 16. Heger A, Holm L: Sensitive pattern discovery with 'fuzzy' alignments of distantly related proteins. Bioinformatics 2003, 19(Suppl 1):i130-7. 17. Pehkonen P, Wong G, Toronen P: Theme discovery from gene lists for identification and viewing of multiple functional groups. BMC Bioinformatics 2005, 6:162. 18. Chagoyen M, Carmona-Saez P, Shatkay H, Carazo JM, Pascual-Montano A: Discovering semantic features in the literature: a foundation for building functional associations. BMC Bioinformatics 2006, 7:41. 19. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP: GenePattern 2.0. Nat Genet 2006, 38:500-1. 20. Pascual-Montano A, Carazo JM, Kochi K, Lehmann D, Pascual-Marqui RD: Non-smooth Non-Negative Matrix Factorization (nsNMF). IEEE Transactions on Pattern Analysis and Machine Intelligence 2006, 28:403-415. 21. Garcia de la Nava J, Santaella DF, Cuenca Alba J, Maria Carazo J, Trelles O, Pascual-Montano A: Engene: the processing and exploratory analysis of gene expression data. Bioinformatics 2003, 19:657-8. 22. Getz G, Levine E, Domany E: Coupled two-way clustering analysis of gene microarray data. Proc Natl Acad Sci USA 2000, 97:12079-84. 23. Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD, Bennett HA, Coffey E, Dai H, He YD, et al.: Functional discovery via a compendium of expression profiles. Cell 2000, 102:109-26. 24. Madeira SC, Oliveira AL: Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2004, 1:24-45. 25. Monti S, Tamayo P, Mesirov J, Golub T: Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Machine Learning 2003, 52:91-118. 26. Lee DD, Seung HS: Algorithms for non-negative matrix factorization. Adv Neural Info Proc Syst 2001, 13:556-562. 27. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286:531-7.
dspace.entity.typePublication
relation.isAuthorOfPublication1356616c-9e69-4852-8415-62fd0b8e7cfc
relation.isAuthorOfPublication.latestForDiscovery1356616c-9e69-4852-8415-62fd0b8e7cfc

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tirado37libre+CC.pdf
Size:
705.79 KB
Format:
Adobe Portable Document Format

Collections