Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Subsurface temperatures during the last millennium: Model and observation

dc.contributor.authorBeltrami, Hugo
dc.contributor.authorGonzález Rouco, Jesús Fidel
dc.contributor.authorStevens, M. Bruce
dc.date.accessioned2023-06-20T11:12:28Z
dc.date.available2023-06-20T11:12:28Z
dc.date.issued2006-05-06
dc.descriptionCopyright 2006 by the American Geophysical Union. This research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Atlantic Innovation Fund (AIF), and project CGL2005-06097 of the Spanish MEC. Part of this work was carried out while JFGR was a James Chair Professor at STFX.
dc.description.abstractGeneral Circulation Models (GCMs) used to distinguish anthropogenic forcing of the Earth's past climate from its natural variability need to be validated by observations. The GCM ECHO-g was used to produce three millennial simulations of the Earth's climate. Two simulations include changes in anthropogenic and natural external forcing factors through the last millennium, differing only in their initial conditions, and a control run with constant external forcing representing internal variability. Since the ground contains a record of long-term trends in SAT, we use borehole temperatures in Canada, grouped into regions, as a record of past climate. The regional average SATs from ECHO-g were used to solve the forward subsurface thermal profile, and compared with the underground temperature anomalies observed at each region. In all cases simulated subsurface anomalies from the forced simulations are in better agreement with observations than those from the control simulation.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada (NSERC)
dc.description.sponsorshipAtlantic Innovation Fund (AIF)
dc.description.sponsorshipMinisterio de Educación y Ciencia (MEC), España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/36536
dc.identifier.doi10.1029/2006GL026050
dc.identifier.issn0094-8276
dc.identifier.officialurlhttp://dx.doi.org/10.1029/2006GL026050
dc.identifier.relatedurlhttp://onlinelibrary.wiley.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51829
dc.issue.number9
dc.journal.titleGeophysical research letters
dc.language.isoeng
dc.publisherAmerican Geophysical Union
dc.relation.projectIDCGL2005-06097
dc.rights.accessRightsopen access
dc.subject.cdu52
dc.subject.keyword1000-yr control simulation
dc.subject.keywordSurface air-temperature
dc.subject.keywordCoupled climate model
dc.subject.keywordEcho-G
dc.subject.keywordGeothermal measurements
dc.subject.keywordBorehole temperatures
dc.subject.keywordInternal variability
dc.subject.keywordNorthern-hemisphere
dc.subject.keywordEastern Canada
dc.subject.keywordReconstructions
dc.subject.ucmAstrofísica
dc.subject.ucmAstronomía (Física)
dc.titleSubsurface temperatures during the last millennium: Model and observation
dc.typejournal article
dc.volume.number33
dcterms.referencesBeltrami, H. (2002), Earth’s long-term memory, Science, 297, 206 – 207. Beltrami, H., and E. Bourlon (2004), Ground warming patterns in the Northern Hemisphere during the last five centuries, Earth Planet. Sci. Lett., 227, 169 – 177. Beltrami, H., and J. C. Mareschal (1992), Ground temperature histories for central and eastern Canada from geothermal measurements: Little Ice Age signature, Geophys Res. Lett., 19, 689 – 692. Beltrami, H., A. M. Jessop, and J.-C. Mareschal (1992), Ground temperature histories in eastern and central Canada from geothermal measurements: Evidence of climatic change, Global Planet. Change, 98, 167 – 184. Beltrami, H., L. Cheng, and J. C. Mareschal (1997), Simultaneous inversion of borehole temperature data for past climate determination, Geophys. J. Int., 129, 311 – 318. Beltrami, H., G. Ferguson, and R. N. Harris (2005), Long-term tracking of climate change by underground temperatures, Geophys. Res. Lett., 32, L19707, doi:10.1029/2005GL023714. Briffa, K. R., and T. J. Osborn (2002), Blowing hot and cold, Science, 295, 2227 – 2228. Chapman, D. S., M. G. Bartlett, and R. N. Harris (2004), Comment on ‘‘Ground vs. surface air temperature trends: Implications for borehole surface temperature reconstructions’’ by M. E. Mann and G. Schmidt, Geophys. Res. Lett., 31, L07205, doi:10.1029/2003GL019054. Crowley, T. J. (2000), Causes of climate change over the past 1000 years, Science, 289, 270 – 277. Deutsches Klimarechenzentrum (1993), The ECHAM3 Atmospheric General Circulation Model, DKRZ Tech. Rep., 6, Hamburg, Germany. Esper, J., E. R. Cook, and F. H. Schweingruberg (2002), Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability, Science, 295, 2250 – 2253. Esper, J., D. C. Frank, and R. J. S. Wilson (2004), Climate reconstructions: Low-frequency ambition and high-frequency ratification, Eos Trans. American Geophysical Union, 85(12), 113, 120. González Rouco, J. F., H. von Storch, and E. Zorita (2003), Deep soil temperature as proxy for surface air-temperature in a coupled model simulation of the last thousand years, Geophys. Res. Lett., 30(21), 2116, doi:10.1029/2003GL018264. González Rouco, H., J. F. Beltrami, E. Zorita, and H. von Storch (2006), Simulation and inversion of borehole temperature profiles in simulated climates: Spatial distribution and surface coupling, Geophys. Res. Lett., 33, L01703, doi:10.1029/2005GL024693. Hansen, J., et al. (2005), Earth’s energy imbalance: Confirmation and implications, Science, 308, 1431 – 1435. Harris, R. N., and D. S. Chapman (2001), Mid latitude (30º– 60ºN) climatic warming inferred by combining borehole temperature with surface air temperature, Geophys. Res. Lett., 28, 747 – 750. Harris, R. N., and D. S. Chapman (2005), Borehole temperatures and tree rings: Seasonality and estimates of extratropical Northern Hemispheric warming, J. Geophys. Res., 110, F04003, doi:10.1029/2005JF000303. Jones, P. D., and M. Mann (2004), Climate over past millennia, Rev. Geophys., 42, RG2002, doi:10.1029/2003RG000143. Legutke, S., and R. Voss (1999), The Hamburg atmosphere-ocean coupled circulation model ECHO-g, DKRZ Tech. Rep. 18, Dtsch. Klimarechenzentrum, Hamburg, Germany. Mann, M. E., and G. A. Schmidt (2003), Ground vs. surface air temperature trends: implications for borehole surface temperature reconstructions, Geophys. Res. Lett., 30(12), 1607, doi:10.1029/2003GL017170. Mann, M. E., S. Rutherford, R. S. Bradley, M. K. Hughes, and F. T. Keiming (2003), Optimal surface temperature reconstructions using terrestrial borehole data, J. Geophys. Res., 108(D7), 4203, doi:10.1029/2002JD002532. Mareschal, J. C., and H. Beltrami (1992), Evidence for recent warming from perturbed geothermal gradients: Examples from eastern Canada, Clim. Dyn., 6, 135 – 143. Mareschal, J. C., C. Jaupart, C. Gariépy, L. Z. Cheng, L. Guillou-Frottier, G. Bienfait, and R. Lapointe (2000), Heat flow and deep thermal structure near the edge of the Canadian Shield, Can. J. Earth Sci., 37, 399 – 414. Min, S., S. Legutke, A. Hense, and W. Kwon (2005a), Internal variability in a 1000-yr control simulation with the coupled climate model ECHO-g -I. Near surface temperature, precipitation and sea level pressure, Tellus, Ser. A, 57, 605 – 621. Min, S., S. Legutke, A. Hense, and W. Kwon (2005b), Internal variability in a 1000-yr control simulation with the coupled climate model ECHO-g -II. El Niño Sourthern Oscillation and North Atlantic Oscillation, Tellus, Ser. A, 57, 622 – 640. Moberg, A., D. M. Sonechkin, K. Holmgren, N. M. Datsenko, and W. Karlen (2005), Highly variable Northern Hemisphere temperatures reconstructed from low- and high- resolution proxy data, Nature, 433, 613 – 617. Pollack, H. N., and S. Huang (2000), Climate reconstructions from subsurface temperatures, Annu. Rev. Earth Planet. Sci., 28, 339 – 365. Pollack, H. N., and J. E. Smerdon (2004), Borehole climate reconstructions: Spatial structure and hemispheric averages, J. Geophys. Res., 109, D11106, doi:10.1029/2003JD004163. Rutherford, S., and M. E. Mann (2004), Correction to ‘‘Optimal surface temperature reconstructions using terrestrial borehole data’’, J. Geophys. Res., 109, D11107, doi:10.1029/2003JD004290. Schmidt, G. A., and M. E. Mann (2004), Reply to Comment on ‘‘Ground vs. surface air temperature trends: Implications for borehole surface temperature reconstructions’’ by M. E. Mann and G. Schmidt, Geophys. Res. Lett., 31, L07206, doi:10.1029/2003GL019144. Shen, P.-Y., H. N. Pollack, S. Huang, and K. Wang (1995), Effects of subsurface heterogeneity on the inference of climate change from borehole temperature data: Model studies and field examples from Canada, J. Geophys. Res., 100, 6383 – 6396. Trenberth, K. E., and B. L. Otto-Bliesner (2003), Toward integrated reconstructions of past climates, Science, 300, 589 – 591. von Storch, H., E. Zorita, J. Jones, Y. Dimitriev, F. González Rouco, and S. Tett (2004), Reconstructing past climate from noisy data, Science, 306, 679 – 682. Zorita, E., J. F. González Rouco, and S. Legutke (2003), Statistical temperature reconstruction in a 1000-year-long control climate simulation an excercise with Mann’s et al (1998) method, J. Clim., 16, 1378 – 1390. Zorita, E., J. F. González Rouco, H. von Storch, J. P. Montávez, and F. Valero (2005), Natural and anthropogenic modes of surface temperature variations in the last thousand years, Geophys. Res. Lett., 32, L08707, doi:10.1029/2004GL021563.
dspace.entity.typePublication
relation.isAuthorOfPublicationb0dda0f2-5a69-45d6-8aec-ccc99f2dc468
relation.isAuthorOfPublication.latestForDiscoveryb0dda0f2-5a69-45d6-8aec-ccc99f2dc468

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gonzalezrouco36libre.pdf
Size:
476.32 KB
Format:
Adobe Portable Document Format

Collections