Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Stellate cell computational modeling predicts signal fltering in the molecular layer circuit of cerebellum

dc.contributor.authorRizza, Martina Francisca
dc.contributor.authorLocatelli, Francesca
dc.contributor.authorMasoli, Stefano
dc.contributor.authorSánchez‑Ponce, Diana
dc.contributor.authorMuñoz Céspedes, Alberto
dc.contributor.authorPrestori, Francesca
dc.contributor.authorD’Angelo, Egidio
dc.date.accessioned2023-06-17T08:27:54Z
dc.date.available2023-06-17T08:27:54Z
dc.date.issued2021-02-16
dc.description.abstractThe functional properties of cerebellar stellate cells and the way they regulate molecular layer activity are still unclear. We have measured stellate cells electroresponsiveness and their activation by parallel fber bursts. Stellate cells showed intrinsic pacemaking, along with characteristic responses to depolarization and hyperpolarization, and showed a marked short-term facilitation during repetitive parallel fber transmission. Spikes were emitted after a lag and only at high frequency, making stellate cells to operate as delay-high-pass flters. A detailed computational model summarizing these physiological properties allowed to explore diferent functional confgurations of the parallel fber—stellate cell—Purkinje cell circuit. Simulations showed that, following parallel fber stimulation, Purkinje cells almost linearly increased their response with input frequency, but such an increase was inhibited by stellate cells, which leveled the Purkinje cell gain curve to its 4 Hz value. When reciprocal inhibitory connections between stellate cells were activated, the control of stellate cells over Purkinje cell discharge was maintained only at very high frequencies. These simulations thus predict a new role for stellate cells, which could endow the molecular layer with low-pass and band-pass fltering properties regulating Purkinje cell gain and, along with this, also burst delay and the burst-pause responses pattern.
dc.description.departmentDepto. de Biología Celular
dc.description.facultyFac. de Ciencias Biológicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. Horizonte 2020
dc.description.sponsorshipCentro Fermi (Rome, Italy)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/72708
dc.identifier.doi10.1038/s41598-021-83209-w
dc.identifier.issnESSN: 2045-2322
dc.identifier.officialurlhttps://doi.org/10.1038/s41598-021-83209-w
dc.identifier.relatedurlhttps://www.nature.com/articles/s41598-021-83209-w
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7200
dc.issue.number3873
dc.journal.titleScientific Reports
dc.language.isoeng
dc.page.final17
dc.page.initial1
dc.publisherNature Research
dc.relation.projectIDHBP SGA2 (785907); HBP SGA3 (945539)
dc.relation.projectIDMNL Project “Local Neuronal Microcircuits”
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu612.8
dc.subject.cdu612.8:004
dc.subject.keywordComputational modelling
dc.subject.keywordCerebellum
dc.subject.ucmBioinformática
dc.subject.ucmNeurociencias (Biológicas)
dc.subject.unesco2490 Neurociencias
dc.titleStellate cell computational modeling predicts signal fltering in the molecular layer circuit of cerebellum
dc.typejournal article
dc.volume.number11
dspace.entity.typePublication
relation.isAuthorOfPublication26fedc65-9f86-4b69-b631-e40727cb3bbe
relation.isAuthorOfPublication.latestForDiscovery26fedc65-9f86-4b69-b631-e40727cb3bbe

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Rizza, M. F. et al. 2021. Stellate cell computational modeling.....pdf
Size:
6.62 MB
Format:
Adobe Portable Document Format

Collections