Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Temporal mechanisms in frontoparallel stereomotion revealed by individual differences analysis

Loading...
Thumbnail Image

Full text at PDC

Publication date

2024

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Federation of European Neuroscience Societies and John Wiley & Sons Ltd
Citations
Google Scholar

Citation

Llamas‐Cornejo, I., Peterzell, D. H., & Serrano‐Pedraza, I. (2024). Temporal mechanisms in frontoparallel stereomotion revealed by individual differences analysis. European Journal of Neuroscience, 59(11), 3117-3133. https://doi.org/10.1111/ejn.16342

Abstract

Masking experiments, using vertical and horizontal sinusoidal depth corrugations, have suggested the existence of more than two spatial-frequency disparity mechanisms. This result was confirmed through an individual differences approach. Here, using factor analytic techniques, we want to investigate the existence of independent temporal mechanisms in frontoparallel stereoscopic (cyclopean) motion. To construct stereomotion, we used sinusoidal depth corrugations obtained with dynamic random-dot stereograms. Thus, no luminance motion was present monocularly. We measured disparity thresholds for drifting vertical (up-down) and horizontal (left-right) sinusoidal corrugations of 0.4 cyc/deg at 0.25, 0.5, 1, 2, 4, 6, and 8 Hz. In total, we tested 34 participants. Results showed a small orientation anisotropy with lower thresholds for horizontal corrugations. Disparity thresholds as a function of temporal frequency were almost constant from 0.25 up to 1 Hz, and then they increased monotonically. Principal component analysis uncovered two significant factors for vertical and two for horizontal corrugations. Varimax rotation showed that one factor loaded from 0.25 to 1–2 Hz and a second factor from 2 to 4 to 8 Hz. Direct Oblimin rotation indicated a moderate intercorrelation of both factors. Our results suggest the possible existence of two somewhat interdependent temporal mechanisms involved in frontoparallel stereomotion.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections