Early-time hydrodynamic response of a tin droplet driven by laser-produced plasma

dc.contributor.authorHernández Rueda, Francisco Javier
dc.contributor.authorLiu, Bo
dc.contributor.authorHemminga, Diko J.
dc.contributor.authorMostafa, Yahia
dc.contributor.authorMeijer, Randy A.
dc.contributor.authorKurilovich, Dmitry
dc.contributor.authorBasko, Mikhail
dc.contributor.authorGelderblom, Henneke
dc.contributor.authorSheil, John
dc.contributor.authorVersolato, Oscar O.
dc.date.accessioned2024-06-17T16:31:10Z
dc.date.available2024-06-17T16:31:10Z
dc.date.issued2022
dc.description.abstractWe experimentally and numerically investigate the early-time hydrodynamic response of tin microdroplets driven by a ns-laser-induced plasma. Experimentally, we use stroboscopic microscopy to record the laser-induced dynamics of liquid tin droplets and determine the propulsion speed (U) and initial radial expansion rate (R-0). The ratio of these two quantities is a key parameter to be optimized for applications in nanolithography, where laser-impacted tin droplets serve as targets for generating extreme ultraviolet light. We explore a large parameter space to investigate the influence of the tin droplet diameter, laser beam diameter, and laser energy on the R-0/U ratio. We find good agreement when comparing the experimentally obtained U and R-0 values to those obtained by detailed radiation-hydrodynamic simulations using RALEF-2D. From the validated simulations, we extract the spatial distribution of the plasma-driven pressure impulse at the droplet-plasma interface to quantify its influence on the partitioning of kinetic energy channeled into propulsion or deformation. Our findings demonstrate that the width of the pressure impulse is the sole pertinent parameter for extracting the kinetic energy partitioning, which ultimately determines the late-time target morphology. We find good agreement between our full radiation hydrodynamic modeling and a generalized analytical fluid-dynamics model [H. Gelderblom et al., J. Fluid Mech. 794, 676 (2016)]. These findings can be used to optimize the kinetic energy partition and tailor the features of tin targets for nanolithography.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipNetherlands Organization for Scientific Research
dc.description.statuspub
dc.identifier.citationJ. Hernandez-Rueda, B. Liu, D. J. Hemminga, Y. Mostafa, R. A. Meijer, D. Kurilovich, M. Basko, H. Gelderblom, J. Sheil, and O. O. Versolato, Early-Time Hydrodynamic Response of a Tin Droplet Driven by Laser-Produced Plasma, Phys. Rev. Research 4, 013142 (2022).
dc.identifier.doi10.1103/PhysRevResearch.4.013142
dc.identifier.essn2643-1564
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevResearch.4.013142
dc.identifier.relatedurlhttps://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.4.013142
dc.identifier.urihttps://hdl.handle.net/20.500.14352/105017
dc.issue.number1
dc.journal.titlePhysical Review Research
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//CTM2011-15697-E/ES/THE WRAPPING UP OF THE IDEADOS PROJECT: INTERNATIONAL WORKSHOP ON ENVIRONMENT, ECOSYSTEMS AND DEMERSAL RESOURCES AND FISHERIES/
dc.relation.projectIDVIDI-15697
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu535
dc.subject.keywordEquation of state
dc.subject.keywordImpact
dc.subject.keywordDeformation
dc.subject.keywordRadiation
dc.subject.keywordSpectra
dc.subject.keywordFragmentation
dc.subject.keywordTargets
dc.subject.keywordSheet
dc.subject.keywordQueos
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209 Óptica
dc.titleEarly-time hydrodynamic response of a tin droplet driven by laser-produced plasma
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number4
dspace.entity.typePublication
relation.isAuthorOfPublicationd9e54546-b998-4b0e-a825-e1eeef1b159b
relation.isAuthorOfPublication.latestForDiscoveryd9e54546-b998-4b0e-a825-e1eeef1b159b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
00200publishedVersion.pdf
Size:
2.31 MB
Format:
Adobe Portable Document Format

Collections