The Paley-Wiener-Schwartz isomorphism in nuclear spaces
dc.contributor.author | Martínez Ansemil, José María | |
dc.contributor.author | Colombeau, J. F. | |
dc.date.accessioned | 2023-06-21T02:02:28Z | |
dc.date.available | 2023-06-21T02:02:28Z | |
dc.date.issued | 1981 | |
dc.description.abstract | The authors are concerned with the characterization of those functions holomorphic on EC′ which are Fourier transforms of elements of ′ (E). Here E is a complete bornological vector space over R, (E) stands for the space of all complex-valued C∞ -functions on E, and EC denotes the complexification and E′ the (bornological) dual of E. The authors start with carrying over the classical Paley-Wiener-Schwartz theorem from RN to vector spaces E which have finite-dimensional bornology. (The only important infinite-dimensional member of this class seems to be ⊕NR, the space of finite sequences.) Then they show that the counterexample of S. Dineen and L. Nachbin [Israel J. Math. 13 (1972), 321–326 (1973)] extends to all vector spaces which possess an infinite-dimensional bounded set, i.e., the Paley-Wiener-Schwartz condition (PWS) does not give the desired characterization in most cases. Finally they formulate a further condition A and they prove that a function holomorphic on EC′ is the Fourier transform of an element of E′ (E) if and only if it satisfies PWS and A, provided E is endowed with a nuclear bornology. For Banach spaces E, a similar result was obtained by T. Abuabara earlier [Advances in holomorphy (Rio de Janeiro, 1977), pp. 1–29, North-Holland, Amsterdam, 1979]. | en |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16844 | |
dc.identifier.issn | 0035-3965 | |
dc.identifier.officialurl | http://csm.ro/reviste/Revue_Mathematique/home_page.html | |
dc.identifier.relatedurl | http://www.ear.ro/index.php | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64681 | |
dc.issue.number | 2 | |
dc.journal.title | Revue roumaine de mathematiques pures et appliquees | |
dc.page.final | 181 | |
dc.page.initial | 169 | |
dc.publisher | Ed. Acad. Române | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 517.98 | |
dc.subject.keyword | Paley-Wiener-Schwartz theorem | |
dc.subject.keyword | Bornological dual | |
dc.subject.keyword | Complete bornology | |
dc.subject.keyword | Vector space of Silva C-infinity-functions | |
dc.subject.keyword | Silva holomorphic function | |
dc.subject.keyword | Nuclear bornology | |
dc.subject.keyword | Fourier-Laplace transforms | |
dc.subject.keyword | Growth property | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | The Paley-Wiener-Schwartz isomorphism in nuclear spaces | en |
dc.type | journal article | |
dc.volume.number | 26 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | e94d6c20-a1ea-4d41-aa71-df8bbd1ad67d | |
relation.isAuthorOfPublication.latestForDiscovery | e94d6c20-a1ea-4d41-aa71-df8bbd1ad67d |