Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A machine learning approach to map the vulnerability of groundwater resources to agricultural contamination

dc.contributor.authorGómez-Escalonilla Canales, Víctor
dc.contributor.authorMartínez Santos, Pedro
dc.date.accessioned2024-10-16T17:54:11Z
dc.date.available2024-10-16T17:54:11Z
dc.date.issued2024
dc.description.abstractGroundwater contamination poses a major challenge to water supplies around the world. Assessing groundwater vulnerability is crucial to protecting human livelihoods and the environment. This research explores a machine learning-based variation of the classic DRASTIC method to map groundwater vulnerability. Our approach is based on the application of a large number of tree-based machine learning algorithms to optimize DRASTIC’s parameter weights. This contributes to overcoming two major issues that are frequently encountered in the literature. First, we provide an evidence-based alternative to DRASTIC’s aprioristic approach, which relies on static ratings and coefficients. Second, the use of machine learning approaches to compute DRASTIC vulnerability maps takes into account the spatial distribution of groundwater contaminants, which is expected to improve the spatial outcomes. Despite offering moderate results in terms of machine learning metrics, the machine learning approach was more accurate in this case than a traditional DRASTIC application if appraised as per the actual distribution of nitrate data. The method based on supervised classification algorithms was able to produce a mapping in which about 45% of the points with high nitrate concentrations were located in areas predicted as high vulnerability, compared to 6% shown by the original DRASTIC method. The main difference between using one method or the other thus lies in the availability of sufficient nitrate data to train the models. It is concluded that artificial intelligence can lead to more robust results if enough data are available.
dc.description.departmentDepto. de Geodinámica, Estratigrafía y Paleontología
dc.description.facultyFac. de Ciencias Geológicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades
dc.description.sponsorshipEuropean Union
dc.description.statuspub
dc.identifier.citationGómez-Escalonilla, Victor, y Pedro Martínez-Santos. «A Machine Learning Approach to Map the Vulnerability of Groundwater Resources to Agricultural Contamination». Hydrology, vol. 11, n.o 9, septiembre de 2024, p. 153, https://doi.org/10.3390/hydrology11090153
dc.identifier.doi10.3390/hydrology11090153
dc.identifier.essn2306-5338
dc.identifier.officialurlhttps://doi.org/10.3390/hydrology11090153
dc.identifier.urihttps://hdl.handle.net/20.500.14352/109040
dc.issue.number153
dc.journal.titleHydrology
dc.language.isoeng
dc.publisherMDPI
dc.relation.projectIDPID2021-124018OB-I00
dc.relation.projectIDGrant Agreement No. 101059372
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu556.3
dc.subject.keywordGroundwater vulnerability
dc.subject.keywordArtificial intelligence
dc.subject.keywordDRASTIC
dc.subject.keywordMLMapper
dc.subject.keywordDuero
dc.subject.ucmHidrología
dc.subject.unesco2508.04 Aguas Subterráneas
dc.titleA machine learning approach to map the vulnerability of groundwater resources to agricultural contamination
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number11
dspace.entity.typePublication
relation.isAuthorOfPublication5046d68f-5c35-4421-8f9c-1c4c7237d801
relation.isAuthorOfPublicationfe2f5bb2-2318-4316-b695-cfeff52d3e6e
relation.isAuthorOfPublication.latestForDiscovery5046d68f-5c35-4421-8f9c-1c4c7237d801

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A Machine Learning Approach to Map the Vulnerability (1).pdf
Size:
26.56 MB
Format:
Adobe Portable Document Format

Collections