Pion scattering poles and chiral symmetry restoration

dc.contributor.authorFernández Fraile, Daniel
dc.contributor.authorGómez Nicola, Ángel
dc.contributor.authorHerruzo, E. T.
dc.date.accessioned2023-06-20T10:52:59Z
dc.date.available2023-06-20T10:52:59Z
dc.date.issued2007-10
dc.description© 2007 The American Physical Society. We are grateful to J. R. Peláez, G. Ríos and R. García Martín for very useful comments and discussions. We also acknowledge financial support from the Spanish research projects FPA2004-02602, FPA2005-02327, PR27/05- 13955-BSCH, UCM-CAM 910309 and from the F. P. I. programme (BES-2005-6726).
dc.description.abstractUsing unitarized chiral perturbation theory methods, we perform a detailed analysis of the π π scattering poles f_0(600) and ρ(770) behavior when medium effects such as temperature or density drive the system towards chiral symmetry restoration. In the analysis of real poles below threshold, we show that it is crucial to extend properly the unitarized amplitudes so that they match the perturbative Adler zeros. Our results do not show threshold enhancement effects at finite temperature in the f_0(600) channel, which remains as a pole of broad nature. We also implement T=0 finite-density effects related to chiral symmetry restoration, by varying the pole position with the pion decay constant. Although this approach takes into account only a limited class of contributions, we reproduce the expected finite-density restoration behavior, which drives the poles towards the real axis, producing threshold enhancement and π π bound states. We compare our results with several model approaches and discuss the experimental consequences, both in relativistic heavy ion collisions and in π -> π π and γ -> π π reactions in nuclei.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish research Projects
dc.description.sponsorshipUCM-CAM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30403
dc.identifier.doi10.1103/PhysRevD.76.085020
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.76.085020
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51388
dc.issue.number8
dc.journal.titlePhysical review D
dc.language.isoeng
dc.publisherAmer Physical Soc
dc.relation.projectIDFPA2004-02602
dc.relation.projectIDFPA2005-02327
dc.relation.projectIDPR27/05- 13955-BSCH
dc.relation.projectIDUCM-CAM 910309
dc.relation.projectIDBES-2005-672
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordPerturbation-theory
dc.subject.keywordFinite-temperature
dc.subject.keywordNuclear medium
dc.subject.keywordNonperturbative approach
dc.subject.keywordEffective lagrangians
dc.subject.keywordOne-loop
dc.subject.keywordMatter
dc.subject.keywordSigma
dc.subject.keywordTransition
dc.subject.keywordMeson
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titlePion scattering poles and chiral symmetry restoration
dc.typejournal article
dc.volume.number76
dcterms.references[1] W. M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006). [2] T. Hatsuda and T. Kunihiro, Phys. Rev. Lett. 55, 158 (1985). [3] S. Chiku and T. Hatsuda, Phys. Rev. D 57, R6 (1998). [4] T. Hatsuda, T. Kunihiro, and H. Shimizu, Phys. Rev. Lett. 82, 2840 (1999). [5] D. Jido, T. Hatsuda, and T. Kunihiro, Phys. Rev. D 63, 011901(R) (2000). [6] K. Yokokawa, T. Hatsuda, A. Hayashigaki, and T. Kunihiro, Phys. Rev. C 66, 022201(R) (2002). [7] D. Davesne, Y. J. Zhang, and G. Chanfray, Phys. Rev. C 62, 024604 (2000). [8] A. Patkos, Z. Szep, and P. Szepfalusy, Phys. Rev. D 66, 116004 (2002). [9] P. Schuck, W. Norenberg, and G. Chanfray, Z. Phys. A330, 119 (1988). [10] A. Patkos, Z. Szep, and P. Szepfalusy, Phys. Rev. D 68, 047701 (2003). [11] Y. Hidaka, O. Morimatsu, T. Nishikawa, and M. Ohtani, Phys. Rev. D 68, 111901(R) (2003). [12] Y. Hidaka, O. Morimatsu, T. Nishikawa, and M. Ohtani, Phys. Rev. D 70, 076001 (2004). [13] L. Roca, E. Oset, and M. J. Vicente Vacas, Phys. Lett. B 541, 77 (2002). [14] H. C. Chiang, E. Oset, and M. J. Vicente-Vacas, Nucl. Phys. A644, 77 (1998); D. Cabrera, E. Oset, and M. J. Vicente Vacas, Phys. Rev. C 72, 025207 (2005). [15] F. Bonutti et al. (CHAOS collaboration), Nucl. Phys. A 677, 213 (2000). [16] A. Starostin et al. (Crystal Ball Collaboration), Phys. Rev. Lett. 85, 5539 (2000). [17] J. G. Messchendorp et al., Phys. Rev. Lett. 89, 222302 (2002). [18] J. Gasser and H. Leutwyler, Phys. Lett. B 184, 83 (1987). [19] P. Gerber and H. Leutwyler, Nucl. Phys. B321, 387 (1989). [20] A. Dobado and J. R. Pela´ez, Phys. Rev. D 59, 034004 (1998); J. R. Peláez, Phys. Rev. D 66, 096007 (2002). [21] T. N. Truong, Phys. Rev. Lett. 61, 2526 (1988); 67, 2260 (1991); A. Dobado, M. J. Herrero, and T. N. Truong, Phys. Lett. B 235, 134 (1990). [22] A. Dobado and J. R. Peláez, Phys. Rev. D 47, 4883 (1993); 56, 3057 (1997). [23] J. A. Oller, E. Oset, and J. R. Peláez, Phys. Rev. Lett. 80, 3452 (1998). [24] A. Gómez Nicola and J. R. Peláez, Phys. Rev. D 65, 054009 (2002). [25] A. Gómez Nicola, F. J. Llanes-Estrada, and J. R. Pela´ez, Phys. Lett. B 550, 55 (2002). [26] A. Dobado, A. Gómez Nicola, F. J. Llanes-Estrada, and J. R. Peláez, Phys. Rev. C 66, 055201 (2002). [27] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984). [28] S. Weinberg, Phys. Rev. Lett. 17, 616 (1966). [29] H. A. Weldon, Phys. Rev. D 28, 2007 (1983); Ann. Phys. (N.Y.) 214, 152 (1992). [30] N. Kaiser, Phys. Rev. C 59, 2945 (1999). [31] C. Amsler and N. A. Tornqvist, Phys. Rep. 389, 61 (2004). [32] H. A. Weldon, Ann. Phys. (N.Y.) 228, 43 (1993). [33] D. V. Bugg, Phys. Lett. B 572, 1 (2003). [34] A. Gómez Nicola, J. R. Peláez, and G. Rios (unpublished). [35] R. Delbourgo and M. D. Scadron, Mod. Phys. Lett. A 10, 251 (1995). [36] J. R. Peláez, Phys. Rev. Lett. 92, 102001 (2004); Mod. Phys. Lett. A 19, 2879 (2004). [37] R. L. Jaffe, arXiv:hep-ph/0701038. [38] M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175, 2195 (1968). [39] D. Toublan, Phys. Rev. D 56, 5629 (1997). [40] A. Schenk, Phys. Rev. D 47, 5138 (1993). [41] R. D. Pisarski, Phys. Rev. D 52, R3773 (1995); V. Koch and C. Song, Phys. Rev. C 54, 1903 (1996); C. Song and V. Koch, Phys. Rev. C 54, 3218 (1996); R. Rapp and J. Wambach, Eur. Phys. J. A 6, 415 (1999); Adv. Nucl. Phys. 25, 1 (2002); H.-J. Schulze and D. Blaschke, Phys. Lett. B 386, 429 (1996); Phys. Part. Nucl. Lett. 1, 70 (2004); H. van Hees and R. Rapp, Phys. Rev. Lett. 97, 102301 (2006). [42] A. Gómez Nicola, F. J. LLanes-Estrada, and J. R. Peláez, Phys. Lett. B 606, 351 (2005). [43] G. Agakichiev et al. (CERES Collaboration), Eur. Phys. J. C 41, 475 (2005). [44] R. Arnaldi et al. (NA60 Collaboration), Phys. Rev. Lett. 96, 162302 (2006). [45] J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 92, 092301 (2004). [46] G. E. Brown and M. Rho, Phys. Rev. Lett. 66, 2720 (1991). [47] M. Harada and C. Sasaki, Phys. Rev. D 74, 114006 (2006). [48] G. E. Brown and M. Rho, Phys. Rep. 363, 85 (2002). [49] H. van Hees and R. Rapp, arXiv:hep-ph/0604269. [50] G. E. Brown and M. Rho, arXiv:nucl-th/0509001; arXiv:nucl-th/0509002. [51] V. Thorsson and A. Wirzba, Nucl. Phys. A589, 633 (1995); U. G. Meissner, J. A. Oller, and A. Wirzba, Ann. Phys. (N.Y.) 297, 27 (2002). [52] R. D. Pisarski and M. Tytgat, Phys. Rev. D 54, R2989 (1996). [53] J. Gasser, H. Leutwyler, and M. E. Sainio, Phys. Lett. B 253, 252 (1991). [54] C. García-Recio, J. Nieves, and E. Oset, Phys. Lett. B 541, 64 (2002). [55] M. J. Vicente Vacas and E. Oset, arXiv:nucl- th/0204055. [56] G. E. Brown and M. Rho, Phys. Rep. 396, 1 (2004).
dspace.entity.typePublication
relation.isAuthorOfPublication574aa06c-6665-4e9a-b925-fa7675e8c592
relation.isAuthorOfPublication.latestForDiscovery574aa06c-6665-4e9a-b925-fa7675e8c592

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gnicola19libre.pdf
Size:
711.33 KB
Format:
Adobe Portable Document Format

Collections