Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

On rational cuspidal projective plane curves

dc.contributor.authorMelle Hernández, Alejandro
dc.contributor.authorFernández de Bobadilla de Olarzábal, Javier José
dc.contributor.authorLuengo Velasco, Ignacio
dc.contributor.authorNémethi , A.
dc.date.accessioned2023-06-20T09:30:37Z
dc.date.available2023-06-20T09:30:37Z
dc.date.issued2006-01
dc.description.abstractIn 2002, L. Nicolaescu and the fourth author formulated a very general conjecture which relates the geometric genus of a Gorenstein surface singularity with rational homology sphere link with the Seiberg--Witten invariant (or one of its candidates) of the link. Recently, the last three authors found some counterexamples using superisolated singularities. The theory of superisolated hypersurface singularities with rational homology sphere link is equivalent with the theory of rational cuspidal projective plane curves. In the case when the corresponding curve has only one singular point one knows no counterexample. In fact, in this case the above Seiberg--Witten conjecture led us to a very interesting and deep set of `compatibility properties' of these curves (generalising the Seiberg--Witten invariant conjecture, but sitting deeply in algebraic geometry) which seems to generalise some other famous conjectures and properties as well (for example, the Noether--Nagata or the log Bogomolov--Miyaoka--Yau inequalities). Namely, we provide a set of `compatibility conditions' which conjecturally is satisfied by a local embedded topological type of a germ of plane curve singularity and an integer $d$ if and only if the germ can be realized as the unique singular point of a rational unicuspidal projective plane curve of degree $d$. The conjectured compatibility properties have a weaker version too, valid for any rational cuspidal curve with more than one singular point. The goal of the present article is to formulate these conjectured properties, and to verify them in all the situations when the logarithmic Kodaira dimension of the complement of the corresponding plane curves is strictly less than 2.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipNetherlands Organization for Scientific Research (NWO).
dc.description.sponsorshipNSF
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/13927
dc.identifier.doi10.1112/S0024611505015467
dc.identifier.issn0024-6115
dc.identifier.officialurlhttp://plms.oxfordjournals.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49766
dc.issue.number1
dc.journal.titleProceedings of the London Mathematical Society
dc.language.isoeng
dc.page.final138
dc.page.initial99
dc.publisherOxford University Press (OUP)
dc.relation.projectIDBFM2001-1488-C02-01
dc.relation.projectIDDMS-0304759
dc.rights.accessRightsopen access
dc.subject.cdu512.7
dc.subject.keywordSingularities
dc.subject.keywordInvariants
dc.subject.keywordSurfaces
dc.subject.keywordMonodromy
dc.subject.keywordNumber
dc.subject.keywordLinks
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleOn rational cuspidal projective plane curves
dc.typejournal article
dc.volume.number92
dspace.entity.typePublication
relation.isAuthorOfPublicationc5f952f6-669f-4e3d-abc8-76d6ac56119b
relation.isAuthorOfPublication2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce
relation.isAuthorOfPublication.latestForDiscoveryc5f952f6-669f-4e3d-abc8-76d6ac56119b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
20040410611v2.pdf
Size:
478.76 KB
Format:
Adobe Portable Document Format

Collections