Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Modeling Spin Transport in Helical Fields: Derivation of an Effective Low-Dimensional Hamiltonian

dc.contributor.authorGutierrez, R.
dc.contributor.authorDíaz García, Elena
dc.contributor.authorGaul, Christopher
dc.contributor.authorBrumme, T.
dc.contributor.authorDomínguez-Adame Acosta, Francisco
dc.contributor.authorCuniberti, G.
dc.date.accessioned2023-06-19T14:54:55Z
dc.date.available2023-06-19T14:54:55Z
dc.date.issued2013-10-31
dc.description© Amer Chemical Soc. The authors thank Ron Naaman for very enlightening discussions on spin-dependent effects in helical systems. This work was supported by the German Academic Exchange Service (DAAD - project reference nr. 54367888) and by Ministerio de Economía y Comptetitividad (MINECO - PRI-AIBDE-2011-0.927) within the joint program Acciones Integradas. Computational resources were provided by the ZIH at TU-Dresden. T.B. thanks the International Max Planck Research School Dynamical Processes in Atoms, Molecules and Solids for financial support. E.D, C.G. and F.D-A were further supported by MINECO (MAT 2010-17180), and research of C.G. was funded by a PICATA postdoctoral fellowship from the Moncloa Campus of International Excellence (UCM-UPM). We gratefully acknowledge support from the German Excellence Initiative via the Cluster of Excellence EXC 1056 ”Center for Advancing Electronics Dresden” (cfAED). This research was partially supported by World Class University program funded by the Ministry of Education, Science and Technology through the National Research Foundation of Korea (R31- 10100).
dc.description.abstractThis study is devoted to a consistent derivation of an effective model Hamiltonian to describe spin transport along a helical pathway and in the presence of spin-orbit interaction, the latter being induced by an external field with helical symmetry. It is found that a sizable spin polarization of an unpolarized incoming state can be obtained without introducing phase breaking processes. For this, at least two energy levels per lattice site in the tight-binding representation are needed. Additionally, asymmetries in the effective electronic-coupling parameters as well as in the spin-orbit interaction strength must be present to achieve net polarization. For a fully symmetric system-in terms of electronic and spin-orbit couplings-no spin polarization is found. The model presented is quite general and is expected to be of interest for the treatment of spin-dependent effects in molecular scale systems with helical symmetry.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipGerman Academic Exchange Service (DAAD)
dc.description.sponsorshipMinisterio de Economa y Comptetitividad
dc.description.sponsorshipInternational Max Planck Research School Dynamical Processes in Atoms, Molecules and Solids
dc.description.sponsorshipMINECO
dc.description.sponsorshipUCM-UPM
dc.description.sponsorshipCenter for Advancing Electronics Dresden (cfAED)
dc.description.sponsorshipMinistry of Education, Science and Technology
dc.description.sponsorshipNational Research Foundation of Korea
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/31061
dc.identifier.doi10.1021/jp401705x
dc.identifier.issn1932-7447
dc.identifier.officialurlhttp://dx.doi.org/10.1021/jp401705x
dc.identifier.relatedurlhttp://pubs.acs.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34750
dc.issue.number43
dc.journal.titleJournal of physical chemistry C
dc.language.isoeng
dc.page.final22284
dc.page.initial22276
dc.publisherAmer Chemical Soc
dc.relation.projectID54367888
dc.relation.projectIDMINECO-PRI-AIBDE-2011-0.927
dc.relation.projectIDMAT 2010-17180
dc.relation.projectIDPICATA postdoctoral fellowship from the Moncloa Campus of International Excellence
dc.relation.projectIDCluster of Excellence EXC 1056
dc.relation.projectIDWorld Class University program (R31-10100)
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordSelf-assembled monolayers
dc.subject.keywordOrganized organic layers
dc.subject.keywordElectron transmission
dc.subject.keywordMagnetic- properties
dc.subject.keywordChiral molecules
dc.subject.keywordConduction
dc.subject.keywordDna
dc.subject.ucmFísica de materiales
dc.subject.ucmFísica del estado sólido
dc.subject.unesco2211 Física del Estado Sólido
dc.titleModeling Spin Transport in Helical Fields: Derivation of an Effective Low-Dimensional Hamiltonian
dc.typejournal article
dc.volume.number117
dcterms.references(1) Xiong, Z. H.; Wu, D.; Valy Vardeny, Z.; Shi, J. Giant Magnetoresistance In Organic Spin- valves. Nature 2004, 427, 821–824. (2) Mooser, S.; Cooper, J. F. K.; Banger, K. K.; Wunderlich, J.; Sirringhaus, H. Spin Injection and Transport in a Solution-processed Organic Semiconductor at Room Temperature. Phys. Rev. B 2012, 85, 235202–1–235202–7. (3) Grünewald, M.; Wahler, M.; Schumann, F.; Michelfeit, M.; Gould, C.; Schmidt, R.; Würthner, F.; Schmidt, G.; Molenkamp, L. W. Tunneling Anisotropic Magnetoresistance in Organic Spin Valves. Phys. Rev. B 2011, 84, 125208–1–125208–5. (4) Li, K.-S.; Chang, Y.-M.; Agilan, S.; Hong, J.-Y.; Tai, J.-C.; Chiang, W.-C.; Fuku- tani, K.; Dowben, P. A.; Lin, M.-T. Organic Spin Valves with Inelastic Tunneling Characteristics. Phys. Rev. B 2011, 83, 172404–1–172404–4. (5) Sun, D.; Yin, L.; Sun, C.; Guo, H.; Gai, Z.; Zhang, X.-G.; Ward, T. Z.; Cheng, Z.; Shen, J. Giant Magnetoresistance in Organic Spin Valves. Phys. Rev. Lett. 2010, 104, 236602–1–236602–4. (6) Göhler, B.; Hamelbeck, V.; Markus, T. Z.; Kettner, M.; Hanne, G. F.; Vager, Z.; Naaman, R.; Zacharias, H. Spin Selectivity in Electron Transmission Through SelfAssembled Monolayers of Double-Stranded DNA. Science 2011, 331, 894–897. (7) Xie, Z.; Markus, T. Z.; Cohen, S. R.; Vager, Z.; Gutierrez, R.; Naaman, R. Spin Specific Electron Conduction through DNA Oligomers. Nano Lett. 2011, 11, 4652–4655. (8) Ray, K.; Ananthavel, S. P.; Waldeck, D. H.; Naaman, R. Asymmetric Scattering of Polarized Electrons by Organized Organic Films of Chiral Molecules. Science 1999, 283, 814–816. (9) Carmeli, I.; Skakalova, V.; Naaman, R.; Vager, Z. Magnetization of Chiral Monolayers of Polypeptide: A Possible Source of Magnetism in Some Biological Membranes. Angew. Chem. Int. Ed. 2002, 41, 761–764. (10) Carmeli, I.; Leitus, G.; Naaman, R.; Reich, S.; Vager, Z. Magnetism Induced by the Organization of Self-assembled Monolayers. J. Chem. Phys. 2003, 118, 10372–10375. (11) Vager, Z.; Naaman, R. Surprising Electronic-Magnetic Properties of Close-Packed Organized Organic Layers. Chem. Phys. 2002, 281, 305 – 309. (12) Naaman, R.; Vager, Z. New Electronic and Magnetic Properties Emerging from Adsorption of Organized Organic Layers. Phys. Chem. Chem. Phys. 2006, 8, 2217–2224. (13) Ray, S. G.; Daube, S. S.; Leitus, G.; Vager, Z.; Naaman, R. Chirality-Induced SpinSelective Properties of Self-Assembled Monolayers of DNA on Gold. Phys. Rev. Lett. 2006, 96, 036101– 1–036101–4. (14) Wei, J. J.; Schafmeister, C.; Bird, G.; Paul, A.; Naaman, R.; Waldeck, D. H. Molecular Chirality and Charge Transfer through Self-Assembled Scaffold Monolayers. J. Phys. Chem. B 2005, 110, 1301–1308. (15) Naaman, R.; Vager, Z. Spin Selective Electron Transmission Through Monolayers of Chiral Molecules. In Electronic and Magnetic Properties of Chiral Molecules and Supramolecular Architectures; Naaman, R., Beratan, D. N., Waldeck, D., Eds.; Topics in Current Chemistry; Springer Berlin / Heidelberg, 2011, 298, Chapter 91, 237-257. (16) Yeganeh, S.; Ratner, M. A.; Medina, E.; Mújica, V. Chiral Electron Transport: Scattering through Helical Potentials. J. Chem. Phys. 2009, 131, 014707–1–014707–9. (17) Medina, E.; López, F.; Ratner, M.; Mújica, V. Chiral Molecular Films as Electron Polarizers and Polarization Modulators. European Phys. Lett. 2012, 99, 17006–p1– 17006–p5. (18) Gutierrez, R.; Díaz, E.; Naaman, R.; Cuniberti, G. Spin-selective Transport through Helical Molecular Systems. Phys. Rev. B 2012, 85, 081404(R)–1–081404(R)–4. (19) Guo, A. M.; Sun, Q. F. Spin-Selective Transport of Electrons in DNA Double Helix. Phys. Rev. Lett. 2012, 108, 218102–1–218102–4. (20) Guo, A.-M.; Sun, Q. F. Enhanced spin-polarized transport through DNA double helix by gate voltage. Phys. Rev. B 2012, 86, 035424–1–035424–5. (21) Vager, D.; Vager, Z. Spin Order without Magnetism: a New Phase of Spontaneously Broken Symmetry in Condensed Matter. Phys. Lett. A 2012, 376, 1895–1897. (22) Skourtis, S. S.; Beratan, D. N.; Naaman, R.; Nitzan, A.; Waldeck, D. H. Chiral Control of Electron Transmission through Molecules. Phys. Rev. Lett. 2008, 101, 238103–1– 238103–4. (23) Zhang, E.; Zhang, S.; Wang, Q. Quantum Transport in a Curved One-Dimensional Quantum Wire with Spin-Orbit Interactions. Phys. Rev. B 2007, 75, 085308–1–085308– 10. (24) Atanasov, V.; Dandoloff, R. Curvature-Induced Quantum Behaviour on a Helical Nanotube. Phys. Lett. A 2008, 372, 6141–6144. (25) Ortix, C.; Kiravittaya, S.; Schmidt, O. G.; van den Brink, J. Curvature-Induced Geometric Potential in Strain-Driven Nanostructures. Phys. Rev. B 2011, 84, 045438–1– 045438–5. (26) Entin, M. V.; Magarill, L. I. Spin-Orbit Interaction of Electrons on a Curved Surface. Phys. Rev. B 2001, 64, 085330–1–085330–5. (27) da Costa, R. C. T. Quantum Mechanics of a Constrained Particle. Phys. Rev. A 1981, 23, 1982–1987. (28) Nozaki, D.; da Rocha, C. G.; Pastawski, H. M.; Cuniberti, G. Disorder and Dephasing Effects on Electron Transport through Conjugated Molecular Wires in Molecular Junctions. Phys. Rev. B 2012, 8, 155327–1–155327–6. (29) Mújica, V.; Kemp, M.; Ratner, M. A. Electron Conduction in Molecular Wires. II. Application to Scanning Tunneling Microscopy. J. Chem. Phys. 1994, 101, 6856–6864.
dspace.entity.typePublication
relation.isAuthorOfPublicationd03da7bf-8066-4f33-93e2-ac077fd4fcb8
relation.isAuthorOfPublication3df963ba-ec00-405d-9b2a-9200d1b4148b
relation.isAuthorOfPublicationdbc02e39-958d-4885-acfb-131220e221ba
relation.isAuthorOfPublication.latestForDiscoveryd03da7bf-8066-4f33-93e2-ac077fd4fcb8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dguez-Adame209postprint.pdf
Size:
1.18 MB
Format:
Adobe Portable Document Format

Collections