Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Defects, singularities and waves

dc.book.titleRecent advances in nonlinear partial differential equations and applications
dc.contributor.authorBonilla, L.L.
dc.contributor.authorCarpio Rodríguez, Ana María
dc.contributor.editorBonilla, L.L.
dc.date.accessioned2023-06-20T13:38:01Z
dc.date.available2023-06-20T13:38:01Z
dc.date.issued2007
dc.descriptionConference in honor of Peter D. Lax and Louis Nirenberg on their 80th birthdays, Toledo, Spain, June 7–10, 2006en
dc.description.abstractCrystal defects such as dislocations are the basis of macroscopic properties such as the strength of materials and control their mechanical, optical and electronic properties. In recent times, advances in electronic microscopy have allowed imaging of atoms and therefore to visualize the core of dislocations, cracks, and so on. In continuum mechanics, dislocations are treated as source terms proportional to delta functions supported on the dislocation line. Cores and crystal structure are not properly considered and it is hard to describe the motion of crystal defects. Unlike defects in fluids (such as vortices), dislocations move only within glide planes, not in arbitrary directions, and they move only when the applied stress surpasses the Peierls stress, which is not infinitesimal. We have proposed a discrete model describing defects in crystal lattices with cubic symmetry and having the standard linear anisotropic elasticity (Navier equations) as its continuum limit. Moving dislocations are traveling waves which become stationary solutions if the applied stress falls below the Peierls value. The corresponding transition is a global bifurcation of the model equations similar to that observed in simpler one-dimensional Frenkel-Kontorova models. Discrete models can also be used to study the interaction of dislocations and the creation of dislocations under sufficient applied stress.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15251
dc.identifier.isbn978-0-8218-4211-9
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53109
dc.issue.number65
dc.language.isoeng
dc.page.final150
dc.page.initial131
dc.publication.placeProvidence
dc.publisherAmerican Mathematical Society
dc.relation.ispartofseriesProceedings of Symposia in Applied Mathematics
dc.rights.accessRightsrestricted access
dc.subject.cdu539
dc.subject.keywordCrystal
dc.subject.keywordDislocations
dc.subject.keywordPeierls stress
dc.subject.keywordNavier equations
dc.subject.keywordAnisotropic elasticity
dc.subject.keywordFrenkel-Kontorova model
dc.subject.keywordPeierls-Nabarrow model
dc.subject.ucmFísica de materiales
dc.titleDefects, singularities and wavesen
dc.typebook part
dspace.entity.typePublication
relation.isAuthorOfPublicationf301b87d-970b-4da8-9373-fef22632392a
relation.isAuthorOfPublication.latestForDiscoveryf301b87d-970b-4da8-9373-fef22632392a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
bonilla.pdf
Size:
432.45 KB
Format:
Adobe Portable Document Format