Regularization by sup-inf convolutions on Riemannian manifolds: An extension of Lasry-Lions theorem to manifolds of bounded curvature
dc.contributor.author | Azagra Rueda, Daniel | |
dc.contributor.author | Ferrera Cuesta, Juan | |
dc.date.accessioned | 2023-06-18T06:47:17Z | |
dc.date.available | 2023-06-18T06:47:17Z | |
dc.date.issued | 2015-03-15 | |
dc.description.abstract | We show how Lasry-Lions's result on regularization of functions defined on R-n or on Hilbert spaces by sup inf convolutions with squares of distances can be extended to (finite or infinite dimensional) Riemannian manifolds M of bounded sectional curvature. More specifically, among other things we show that if the sectional curvature K of M satisfies -K-0 <= K <= K-0 on M for some K-0 >= 0, and if the injectivity and convexity radii of M are strictly positive, then every bounded, uniformly continuous function f : M -> R can be uniformly approximated by globally C-1,C-1 functions defined by (f(lambda))(mu) = sup(z is an element of M nu is an element of M)inf {f(y) + 1/2 lambda d(z, y)(2) - 1/2 mu d(x, z)(2)} as lambda, mu -> 0(+), with 0 < mu < lambda/2. Our definition of (global) C-1,C-1 smoothness is intrinsic and natural, and it reduces to the usual one in flat spaces, but we warn the reader that, in the noncompact case, this definition differs from other notions of (rather local) C-1,C-1 smoothness that have been recently used by other authors (based on charts). The importance of this regularization method lies (rather than on the degree of smoothness obtained) on the fact that the correspondence f bar right arrow (f(lambda))(mu) is explicit and preserves many significant geometrical properties that the given functions f may have, such as invariance by a set of isometries, infima, sets of minimizers, ordering, local or global Lipschitzness, and (only when one additionally assumes that K <= 0) local or global convexity. We also give two examples showing that this result completely fails, even for (nonflat) Cartan-Hadamard manifolds, whenever f or K are not bounded. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/33309 | |
dc.identifier.doi | 10.1016/j.jmaa.2014.10.022 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S0022247X14009457 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/24179 | |
dc.issue.number | 2 | |
dc.journal.title | Journal of mathematical analysis and applications | |
dc.language.iso | eng | |
dc.page.final | 1024 | |
dc.page.initial | 994 | |
dc.publisher | Academic Press | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 514.764.2 | |
dc.subject.keyword | approximation | |
dc.subject.keyword | convex function | |
dc.subject.keyword | semiconcave function | |
dc.subject.keyword | Lipschitz | |
dc.subject.keyword | Riemannian manifold | |
dc.subject.keyword | distance function | |
dc.subject.keyword | Lasry-Lions regularization | |
dc.subject.keyword | C 1 | |
dc.subject.keyword | 1 function. | |
dc.subject.ucm | Geometría diferencial | |
dc.subject.unesco | 1204.04 Geometría Diferencial | |
dc.title | Regularization by sup-inf convolutions on Riemannian manifolds: An extension of Lasry-Lions theorem to manifolds of bounded curvature | |
dc.type | journal article | |
dc.volume.number | 423 | |
dcterms.references | [1] J. Angulo and S. Velasco-Forero, Mathematical morphology for real-valued images on Riemannian manifolds. In Proc. of ISMM’13 (11th International Symposium on Mathematical Morphology), Springer LNCS 7883, p. 279–291, 2013. [2] H. Attouch, D. Azé, Approximation and regularization of arbitrary functions in Hilbert spaces by the Lasry-Lions method. Ann. Inst. H. Poincaré Anal. Non Lin´eaire 10 (1993), no. 3, 289–312. [3] D. Azagra, Global and fine approximation of convex functions. Proc. Lond. Math. Soc. (3) 107 (2013), no. 4, 799–824. [4] D. Azagra and J. Ferrera, Inf-convolution and regularization of convex functions on Riemannian manifolds of nonpositive curvature. Rev. Mat. Complut. 19 (2006), no. 2, 323–345. [5] D. Azagra, J. Ferrera, F. López-Mesas, Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds, J. Funct. Anal. 220 (2005) no. 2, 304–361. [6] V. Bangert, Analytische Eigenschaften konvexer Funktionen auf Riemannschen Mannigfaltigkeiten, J. Reine Angew. Math. 307/308 (1979), 309–324. [7] P. Bernard, Existence of C 1,1 critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds. Ann. Sci. Ecole Norm. Sup. (4) 40 (2007), no. 3, 445–452. ´ [8] J. Cheeger, D.G. Ebin, Comparison theorems in Riemannian geometry. North-Holland Mathematical Library, Vol. 9. North-Holland Publishing Co., Amsterdam–Oxford; American Elsevier Publishing Co., Inc., New York, 1975. [9] M.P. do Carmo, Riemannian geometry. Mathematics: Theory and Applications. Birkhäuser Boston, Inc., Boston, MA, 1992. [10] A. Fathi, Regularity of C 1 solutions of the Hamilton-Jacobi equation. Ann. Fac. Sci. Toulouse Math. (6) 12 (2003), no. 4, 479–516. [11] A. Fathi, Weak KAM Theorem in Lagranian Dynamics. Book to appear. [12] R. E. Greene, and H. Wu, C ∞ convex functions and manifolds of positive curvature, Acta Math. 137 (1976), no. 3-4, 209–245. [13] W.P.A. Klingenberg, Riemannian geometry. Second edition. de Gruyter Studies in Mathematics, 1. Walter de Gruyter & Co., Berlin, 1995. [14] S. Lang, Fundamentals of Differential Geometry, Graduate Texts in Mathematics, 191. Springer-Verlag, New York, 1999. [15] J.-M. Lasry, and P.-L. Lions, A remark on regularization in Hilbert spaces. Israel J. Math. 55 (1986), no. 3, 257–266. [16] T. Sakai, Riemannian geometry. Translations of Mathematical Monographs, 149. American Mathematical Society, Providence, RI, 1996. [17] S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J. (2) 10 (1958) 338–354. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6696556b-dc2e-4272-8f5f-fa6a7a2f5344 | |
relation.isAuthorOfPublication | 1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3 | |
relation.isAuthorOfPublication.latestForDiscovery | 6696556b-dc2e-4272-8f5f-fa6a7a2f5344 |
Download
Original bundle
1 - 1 of 1