The Chern-Simons invariants of hyperbolic manifolds via covering spaces
dc.contributor.author | Hilden, Hugh Michael | |
dc.contributor.author | Lozano Imízcoz, María Teresa | |
dc.contributor.author | Montesinos Amilibia, José María | |
dc.date.accessioned | 2023-06-20T18:47:48Z | |
dc.date.available | 2023-06-20T18:47:48Z | |
dc.date.issued | 1991 | |
dc.description.abstract | The Chern-Simons invariant was extended to 3-dimensional geometric cone manifolds in [H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia, J. Math. Sci. Univ. Tokyo 3 (1996), no. 3, 723–744; MR1432115 (98h:57056)]. The present paper is about the behavior of this generalized invariant under change of orientation and with respect to virtually regular coverings. (A virtually regular cover is a cover with the property that the branching index is constant along the fiber over each point of the branching set.) As one might suspect, CS(−M)=−CS(M). However, unlike the volume, the Chern-Simons invariant is not multiplicative with respect to branched coverings. There is a correction term depending on the intersection number of longitudes of inverse images of the singular set with the inverse image of the longitude of the singular set. The paper concludes with applications of the main formula to specific examples. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22217 | |
dc.identifier.doi | 10.1112/S0024609398005529 | |
dc.identifier.issn | 0024-6093 | |
dc.identifier.officialurl | http://blms.oxfordjournals.org/content/31/3/354.full.pdf+html | |
dc.identifier.relatedurl | http://blms.oxfordjournals.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/58642 | |
dc.issue.number | 3 | |
dc.journal.title | Bulletin of the London Mathematical Society | |
dc.language.iso | eng | |
dc.page.final | 366 | |
dc.page.initial | 354 | |
dc.publisher | Oxford University Press | |
dc.relation.projectID | PB95-0413 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 515.162.8 | |
dc.subject.keyword | geometric 3-manifold | |
dc.subject.keyword | branched covering | |
dc.subject.keyword | cone-manifold | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | The Chern-Simons invariants of hyperbolic manifolds via covering spaces | |
dc.type | journal article | |
dc.volume.number | 31 | |
dcterms.references | M. Culler and P. B. Shalen, `Varieties of group representations and splitting of 3-manifolds', Ann. of Math. 117 (1983) 109–146. J. Hempel, `The lattice of branched covers over the figure-eight knot', Topology Appl. 34 (1990) 183–201. H. M. Hilden, M. T. Lozano and J. M. Montesinos, `On knots that are universal', Topology 24 (1985) 499–509. H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia, `Universal 2-bridge knot and link orbifolds', J. Knot Theory Ramifications 2 (1993) 141–148. H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia, `On a remarkable polyhedron geometrizing the figure-eight knot cone manifolds', J. Math. Sci. Univ. Tokyo 2 (1995) 501–561. H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia, `On volumes and Chern–Simons invariants of geometric 3-manifolds', J. Math. Sci. Univ. Tokyo 3 (1996) 723–744. H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia, `Volumes and Chern–Simons invariants of cyclic coverings over rational knots', Topology and Teichm"uller spaces (ed. Sadayoshi Kojima et al., World Scientific, Singapore, 1996) 31–55. C. D. Hodgson, G. R. Meyerhoff and J. R. Weeks, `Surgeries on the Whitehead link yield geometrically similar manifolds', Topology '90 (ed. B. Apanasov, W. D. Neumann, A. W. Reid and L. Siebenmann, de Gruyter, Amsterdam, 1992) 195–206. M. T. Lozano and C. Safont, `Virtually regular coverings', Proc. Amer. Math. Soc. 106 (1989) 207–214. R. Meyerhoff, `Density of the Chern–Simons invariant for hyperbolic 3-manifolds', Low-dimensional topology and Kleinian groups, London Math. Soc. Lecture Note Ser. 112 (ed. D. B. A. Epstein, Cambridge University Press, 1987) 217–240. R. Meyerhoff and D. Ruberman, `Mutation and the [U+03B7]-invariant', J. Differential Geom. 31 (1990) 101–130. D. Rolfsen, Knots and links (Publish or Perish, Berkeley, CA, 1976). M. Sch"onert et al., GAP, version 3.4, 4th edn (D f"ur Mathematik, RWTH Aachen, 1995). H. Seifert and W. Threlfall, Lehrbuch der Topologie (Teubner, Leipzig, 1934). T. Yoshida, `The [U+03B7]-invariant of hyperbolic 3-manifolds', Invent. Math. 8 (1985) 473–514. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 7097502e-a5b0-4b03-b547-bc67cda16ae2 | |
relation.isAuthorOfPublication.latestForDiscovery | 7097502e-a5b0-4b03-b547-bc67cda16ae2 |
Download
Original bundle
1 - 1 of 1