Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The Chern-Simons invariants of hyperbolic manifolds via covering spaces

dc.contributor.authorHilden, Hugh Michael
dc.contributor.authorLozano Imízcoz, María Teresa
dc.contributor.authorMontesinos Amilibia, José María
dc.date.accessioned2023-06-20T18:47:48Z
dc.date.available2023-06-20T18:47:48Z
dc.date.issued1991
dc.description.abstractThe Chern-Simons invariant was extended to 3-dimensional geometric cone manifolds in [H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia, J. Math. Sci. Univ. Tokyo 3 (1996), no. 3, 723–744; MR1432115 (98h:57056)]. The present paper is about the behavior of this generalized invariant under change of orientation and with respect to virtually regular coverings. (A virtually regular cover is a cover with the property that the branching index is constant along the fiber over each point of the branching set.) As one might suspect, CS(−M)=−CS(M). However, unlike the volume, the Chern-Simons invariant is not multiplicative with respect to branched coverings. There is a correction term depending on the intersection number of longitudes of inverse images of the singular set with the inverse image of the longitude of the singular set. The paper concludes with applications of the main formula to specific examples.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22217
dc.identifier.doi10.1112/S0024609398005529
dc.identifier.issn0024-6093
dc.identifier.officialurlhttp://blms.oxfordjournals.org/content/31/3/354.full.pdf+html
dc.identifier.relatedurlhttp://blms.oxfordjournals.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58642
dc.issue.number3
dc.journal.titleBulletin of the London Mathematical Society
dc.language.isoeng
dc.page.final366
dc.page.initial354
dc.publisherOxford University Press
dc.relation.projectIDPB95-0413
dc.rights.accessRightsrestricted access
dc.subject.cdu515.162.8
dc.subject.keywordgeometric 3-manifold
dc.subject.keywordbranched covering
dc.subject.keywordcone-manifold
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleThe Chern-Simons invariants of hyperbolic manifolds via covering spaces
dc.typejournal article
dc.volume.number31
dcterms.referencesM. Culler and P. B. Shalen, `Varieties of group representations and splitting of 3-manifolds', Ann. of Math. 117 (1983) 109–146. J. Hempel, `The lattice of branched covers over the figure-eight knot', Topology Appl. 34 (1990) 183–201. H. M. Hilden, M. T. Lozano and J. M. Montesinos, `On knots that are universal', Topology 24 (1985) 499–509. H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia, `Universal 2-bridge knot and link orbifolds', J. Knot Theory Ramifications 2 (1993) 141–148. H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia, `On a remarkable polyhedron geometrizing the figure-eight knot cone manifolds', J. Math. Sci. Univ. Tokyo 2 (1995) 501–561. H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia, `On volumes and Chern–Simons invariants of geometric 3-manifolds', J. Math. Sci. Univ. Tokyo 3 (1996) 723–744. H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia, `Volumes and Chern–Simons invariants of cyclic coverings over rational knots', Topology and Teichm"uller spaces (ed. Sadayoshi Kojima et al., World Scientific, Singapore, 1996) 31–55. C. D. Hodgson, G. R. Meyerhoff and J. R. Weeks, `Surgeries on the Whitehead link yield geometrically similar manifolds', Topology '90 (ed. B. Apanasov, W. D. Neumann, A. W. Reid and L. Siebenmann, de Gruyter, Amsterdam, 1992) 195–206. M. T. Lozano and C. Safont, `Virtually regular coverings', Proc. Amer. Math. Soc. 106 (1989) 207–214. R. Meyerhoff, `Density of the Chern–Simons invariant for hyperbolic 3-manifolds', Low-dimensional topology and Kleinian groups, London Math. Soc. Lecture Note Ser. 112 (ed. D. B. A. Epstein, Cambridge University Press, 1987) 217–240. R. Meyerhoff and D. Ruberman, `Mutation and the [U+03B7]-invariant', J. Differential Geom. 31 (1990) 101–130. D. Rolfsen, Knots and links (Publish or Perish, Berkeley, CA, 1976). M. Sch"onert et al., GAP, version 3.4, 4th edn (D f"ur Mathematik, RWTH Aachen, 1995). H. Seifert and W. Threlfall, Lehrbuch der Topologie (Teubner, Leipzig, 1934). T. Yoshida, `The [U+03B7]-invariant of hyperbolic 3-manifolds', Invent. Math. 8 (1985) 473–514.
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
montesinos59.pdf
Size:
266.4 KB
Format:
Adobe Portable Document Format

Collections