Publication:
Noise in phase shifting interferometry

dc.contributor.authorQuiroga Mellado, Juan Antonio
dc.contributor.authorEstrada, Julio César
dc.contributor.authorServín Guirado, Manuel
dc.contributor.authorMosiño, Juan Francisco
dc.contributor.authorCywiak Garbarcewics, Moisés
dc.date.accessioned2023-06-20T03:35:27Z
dc.date.available2023-06-20T03:35:27Z
dc.date.issued2009-05-25
dc.description© 2009 Optical Society of America. We acknowledge the Mexican National Science and Technology Council (Consejo Nacional de Ciencia y Tecnologia, CONACYT) for its valuable support.
dc.description.abstractWe present a theoretical analysis to estimate the amount of phase noise due to noisy interferograms in Phase Shifting Interferometry (PSI). We also analyze the fact that linear filtering transforms corrupting multiplicative noise in Electronic Speckle Pattern Interferometry (ESPI) into fringes corrupted by additive gaussian noise. This fact allow us to obtain a formula to estimate the standard deviation of the noisy demodulated phase as a function of the spectral response of the preprocessing spatial filtering combined with the PSI algorithm used. This phase noise power formula is the main result of this contribution.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMexican National Science and Technology Council, CONACYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22822
dc.identifier.citation1. C. Rathjen, “Statistical properties of phase-shift algorithms,” J. Opt. Soc. Am. A 12, 1997-2008 (1995). 2. C. P. Brophy, “Effect of intensity error correlation on the computed phase of phase-shifting interferometry,” J. Opt. Soc. Am. A 7, 537-541 (1990). 3. Y. Surrel, “Additive noise effect in digital phase detection,” Appl. Opt. 36, 271-276 (1997). 4. J. Schmit and C. Katherine, “Window function influence on phase error in phase-shifting algorithms,” Appl. Opt. 35, 5642-5649 (1996). 5. G. Paez and M. Strojnik, “Analysis and minimization of noise effects in phase shifting interferometry,” SPIE Vol. 3744, 295-305 (1999). 6. K. J. Gasvik, Optical Metrology (John Wiley & Sons Ltd); 2th ed., (1996). 7. A. Papoulis, Probability, Random Variables, and Stochastic Processes, (McGraw-Hill, 3th ed., 1991). 8. M. Servín and M. Kujawinska, Modern Fringe Pattern Analysis in Interferometry, in Handbook of Optical Engineering, D. Malacara and B. J. Thompson eds., (Marcel Dekker Inc., 2001) Chap. 12. 9. L. W. Couch, Digital & Analog Communication Systems, (Prentice Hall, 2006) 7th ed. 10. P. Hariharan, B. F. Oreb, and T. Eyui, “Digital phase shifting interferometry: a simple errorcompensating phase calculation algorithm,” Appl. Opt. 26, 2504-2505 (1987). 11. K. Freischland and C. L. Koliopolous, “Fourier description of digital phase-measuring interferometry,” J. Opt. Soc. Am. A 7, 542-552 (1990).
dc.identifier.doi10.1364/OE.17.008789
dc.identifier.issn1094-4087
dc.identifier.officialurlhttp://dx.doi.org/10.1364/OE.17.008789
dc.identifier.relatedurlhttp://www.opticsinfobase.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43977
dc.issue.number11
dc.journal.titleOptics Express
dc.language.isoeng
dc.page.final8794
dc.page.initial8789
dc.publisherThe Optical Society Of America
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordError
dc.subject.keywordAlgorithms.
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleNoise in phase shifting interferometry
dc.typejournal article
dc.volume.number17
dspace.entity.typePublication
relation.isAuthorOfPublication1c171089-8e25-448f-bcce-28d030f8f43a
relation.isAuthorOfPublication.latestForDiscovery1c171089-8e25-448f-bcce-28d030f8f43a
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
QuirogaJA31.pdf
Size:
113.96 KB
Format:
Adobe Portable Document Format
Collections