Some useful procedures towards consistent preference modeling
dc.book.title | Proceedings of the 7th Joint Conference on Information Sciences | |
dc.contributor.author | Gómez González, Daniel | |
dc.contributor.author | Montero De Juan, Francisco Javier | |
dc.contributor.author | Yáñez Gestoso, Francisco Javier | |
dc.contributor.editor | Wang, P.P. | |
dc.date.accessioned | 2023-06-20T21:11:30Z | |
dc.date.available | 2023-06-20T21:11:30Z | |
dc.date.issued | 2003 | |
dc.description.abstract | Decision making based upon valued preference relations is assuming that each decision maker is able to consistently manage intensity values for preferences, but this is indeed a di±cult task, even when dealing with few alternatives. Representation tools will therefore play a key role in order to help decision makers to understand their preference structure. This paper introduces a particular representation based upon classical crisp dimension theory,addressing some associated computational complexity problems, which will hopefully be useful within a valued framework. | en |
dc.description.department | Depto. de Estadística e Investigación Operativa | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Gobierno de España | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/30658 | |
dc.identifier.isbn | 0970789025 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/60928 | |
dc.language.iso | eng | |
dc.page.final | 142 | |
dc.page.initial | 139 | |
dc.page.total | 1780 | |
dc.publication.place | Estados Unidos | |
dc.publisher | Association for Intelligent Machinery | |
dc.relation.projectID | BMF2002-0281 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 510.64 | |
dc.subject.ucm | Lógica simbólica y matemática (Matemáticas) | |
dc.subject.unesco | 1102.14 Lógica Simbólica | |
dc.title | Some useful procedures towards consistent preference modeling | en |
dc.type | book part | |
dcterms.references | [1] B. Dushnik and E.W. Miller: Partially ordered sets. American Journal of Mathematics 63 (1941), 600{610. [2] J. Gonzalez-Pachon, D.Gomez, J.Montero and J.Yañez: Searching for the dimension of binary valued preference relations. Int. J. Approximate Reasoning (to appear). [3] J. Gonzalez-Pachon, D.Gomez, J.Montero and J.Yañez: Soft dimension theory. Fuzzy Sets and Systems (to appear). [4] J. Montero and J. Tejada: Some problems on the denition of fuzzy preference relation. Fuzzy Sets and Systems 20 (1986), 45-53. [5] P.K. Pattanaik: Voting and Collective Choice.Cambridge U.P., London, 1971. [6] A.K. Sen: Collective Choice and Social Welfare. Holden-Day, San Francisco, 1970. [7] W.T. Trotter: Combinatorics and Partially Ordered Sets. Dimension Theory. The Johns Hopkins University Press, Baltimore and London (1992). [8] M. Yannakakis: On the complexity of the partial order dimension problem. SIAM Journal of Algebra and Discrete Mathematics 3 (1982), 351-358. [9] J. Yañez and J. Montero: A poset dimension algorithm. Journal of Algorithms 30 (1999), 185-208. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 4dcf8c54-8545-4232-8acf-c163330fd0fe | |
relation.isAuthorOfPublication | 9e4cf7df-686c-452d-a98e-7b2602e9e0ea | |
relation.isAuthorOfPublication | 5ce22aab-a4c1-4dfe-b8f9-78e09cbd2878 | |
relation.isAuthorOfPublication.latestForDiscovery | 4dcf8c54-8545-4232-8acf-c163330fd0fe |
Download
Original bundle
1 - 1 of 1