Linear Non-Autonomous Heat Flow in $$L_0^1({{\mathbb {R}}}^{d})$$ and Applications to Elliptic Equations in $${{\mathbb {R}}}^{d}$$
dc.contributor.author | Robinson, James C. | |
dc.contributor.author | Rodríguez Bernal, Aníbal | |
dc.date.accessioned | 2023-06-22T12:29:47Z | |
dc.date.available | 2023-06-22T12:29:47Z | |
dc.date.issued | 2022-10-11 | |
dc.description | CRUE-CSIC (Acuerdos Transformativos 2022) | |
dc.description.abstract | We study solutions of the equation ut−Δu+λu=f, for initial data that is ‘large at infinity’ as treated in our previous papers on the unforced heat equation. When f=0 we characterise those (u0,λ) for which solutions converge to 0 as t→∞, as not every λ>0 is able to achieve that for all initial data. When f≠0 we give conditions to guarantee that the solution is given by the usual ‘variation of constants formula’ u(t)=e−λtS(t)u0+∫t0e−λ(t−s)S(t−s)f(s)ds, where S(⋅) is the heat semigroup. We use these results to treat the elliptic problem −Δu+λu=f when f is allowed to be ‘large at infinity’, giving conditions under which a solution exists that is given by convolution with the usual Green’s function for the problem. Many of our results are sharp when u0,f≥0. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN)//AEI/ 10.13039/501100011033 | |
dc.description.sponsorship | Centro de Excelencia Severo Ochoa | |
dc.description.sponsorship | Universidad Complutense de Madrid | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/75652 | |
dc.identifier.doi | 10.1007/s10884-022-10195-6 | |
dc.identifier.issn | 1040-7294 | |
dc.identifier.officialurl | https://doi.org/10.1007/s10884-022-10195-6 | |
dc.identifier.relatedurl | -0 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/72681 | |
dc.journal.title | Journal of Dynamics and Differential Equations | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.projectID | PID2019-103860GB-I00 | |
dc.relation.projectID | CEX2019-000904-S | |
dc.relation.projectID | GR58/08, UCM (920894) | |
dc.rights | Atribución 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by/3.0/es/ | |
dc.subject.keyword | Heat equation | |
dc.subject.keyword | Large solutions | |
dc.subject.keyword | Blow-up | |
dc.subject.keyword | Global solutions | |
dc.subject.keyword | Regularity of elliptic problem | |
dc.subject.ucm | Matemáticas (Matemáticas) | |
dc.subject.unesco | 12 Matemáticas | |
dc.title | Linear Non-Autonomous Heat Flow in $$L_0^1({{\mathbb {R}}}^{d})$$ and Applications to Elliptic Equations in $${{\mathbb {R}}}^{d}$$ | |
dc.type | journal article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | fb7ac82c-5148-4dd1-b893-d8f8612a1b08 | |
relation.isAuthorOfPublication.latestForDiscovery | fb7ac82c-5148-4dd1-b893-d8f8612a1b08 |
Download
Original bundle
1 - 1 of 1