Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering

dc.contributor.authorMartil De La Plaza, Ignacio
dc.date.accessioned2023-06-20T10:44:05Z
dc.date.available2023-06-20T10:44:05Z
dc.date.issued2007-09-07
dc.description© 2007 IOP Publishing Ltd. Parts of this work were done during a research stay of one of the authors (FLM) at the ISL of the HMI with support of a mobility grant (PR2004-0426) of the Spanish Ministry of Education and Science. It was also supported by the research project TEC2004/1237 and the research grant (AP2003-4434) of the same Ministry. Special thanks are given to the ISL and to the CAI-‘Tecnologías Físicas for a long trajectory of fruitful collaboration.
dc.description.abstractThin films of hafnium oxide ( HfO2) have been grown by high pressure reactive sputtering on transparent quartz substrates ( UV- grade silica) and silicon wafers. Deposition conditions were adjusted to obtain polycrystalline as well as amorphous films. Optical properties of the films deposited on the silica substrates were investigated by transmittance and reflectance spectroscopy in the ultraviolet, visible and near infrared range. A numerical analysis method that takes into account the different surface roughness of the polycrystalline and amorphous films was applied to calculate the optical constants ( refractive index and absorption coefficient). Amorphous films were found to have a higher refractive index and a lower transparency than polycrystalline films. This is attributed to a higher density of the amorphous samples, which was confirmed by atomic density measurements performed by heavy- ion elastic recoil detection analysis. The absorption coefficient gave an excellent fit to the Tauc law ( indirect gap), which allowed a band gap value of 5.54 eV to be obtained. The structure of the films ( amorphous or polycrystalline) was found to have no significant influence on the nature of the band gap. The Tauc plots also give information about the structure of the films, because the slope of the plot ( the Tauc parameter) is related to the degree of order in the bond network. The amorphous samples had a larger value of the Tauc parameter, i. e. more order than the polycrystalline samples. This is indicative of a uniform bond network with percolation of the bond chains, in contrast to the randomly oriented polycrystalline grains separated by grain boundaries.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Education and Science
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25982
dc.identifier.doi10.1088/0022-3727/40/17/037
dc.identifier.issn0022-3727
dc.identifier.officialurlhttp://dx.doi.org/10.1088/0022-3727/40/17/037
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51105
dc.issue.number17
dc.journal.titleJournal of Physics D-Applied Physics
dc.language.isoeng
dc.page.final5265
dc.page.initial5256
dc.publisherIOP Publishing LTD
dc.relation.projectIDPR2004-0426
dc.relation.projectIDTEC2004/1237
dc.relation.projectIDAP2003-4434)
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordElectron-Cyclotron-Resonance
dc.subject.keywordChemical-Vapor-Deposition
dc.subject.keywordHafnium Oxide
dc.subject.keywordSpectroscopic Ellipsometry
dc.subject.keywordCompositional Analysis
dc.subject.keywordAmorphous-Silicon
dc.subject.keywordGate Dielectrics
dc.subject.keywordSioxnyhz Flms
dc.subject.keywordSin(X)-H Films
dc.subject.keywordPlasma Method.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleOptical properties and structure of HfO2 thin films grown by high pressure reactive sputtering
dc.typejournal article
dc.volume.number40
dcterms.references[1] Wilk, G.D., Wallace, R.M. and Anthony, J.M., 2001, J. Appl. Phys., 89, 5243. [2] Kingdom, A.I., María, J.P. and Streiffer, S.K., 2000, Nature, 406, 1032. [3] Martínez, F.L., del Prado, Á., Mártil, I., González-Díaz, G., Bohne, W., Fuhs, W., Röhrich, J., Selle, B. and Sieber, I., 2001, Phys. Rev. B, 63, 245320. [4] Martínez, F.L., Ruíz-Merino, R., del Prado, Á., San Andrés, E., Mártil, I., González-Díaz, G., Jeynes, C., Barradas, N.P., Wang, L. and Reehal, H.S., 2004, Thin Solid Films, 459, 203. [5] Mártil, I., del Prado, Á., San Andrés, E., González-Díaz, G. and Martínez, F.L., 2003, J. Appl. Phys., 94, 2642. [6] San Andrés, E., del Prado, Á., Mártil, I., González-Díaz, G. and Martínez, F.L., 2003, J. Vac. Sci. Technol., 21, 1306. [7] del Prado, Á., San Andrés, E., Mártil, I., González-Díaz, G., Bravo, D., López, F.J., Fernández, M. and Martínez, F.L., 2003, J. Appl. Phys., 94, 1019. [8] del Prado, Á., San Andrés, E., Mártil, I., González-Díaz, G., Bravo, D., López, F.J., Bohne, W., Röhrich, J., Selle, B. and Martínez, F.L., 2003, J. Appl. Phys., 93, 8930. [9] del Prado, Á., San Andrés, E., Martínez, F.L., Mártil, I., González-Díaz, G., Bohne, W., Röhrich, J., Selle, B. and Fernández, M., 2002, Vacuum, 67, 507. [10] Buchanan, D.A., 1999, IBM J. Res. Dev., 43, 245. [11] San Andrés, E., Pantisano, L., Severi, S., Trojman, L., Ferain, I., Toledano-Luque, M., Jurczak, M., Groeseneken, G., De Gendt, S. and Heyns, M., Microelectr. Eng. at press. [12] Toledano-Luque, M., Pantisano, L., Degraeve, R., Zahid, M.B., Ferain, I., San Andrés, E., Groeseneken, G. and De Gendt, S., Microelectr. Eng. at press. [13] Robertson, J., 2006, Rep. Prog. Phys., 69, 327. [14] Poppe, U., et al., 1992, J. Appl. Phys., 71, 5572. [15] San Andrés, E., Toledano-Luque, M., del Prado, Á., Navacerrada, M.A., Mártil, I., González-Díaz, G., Bohne, W. and Röhrich, J., 2005, J. Vac. Sci. Technol. A, 23, 1523. [16] Saxena, A.N. and Mittal, K.L., 1975, J. Appl. Phys., 46, 2788. [17] Cho, Y.J., Nguyen, N.V., Richter, C.A., Ehrstein, J.R., Lee, B.H. and Lee, J.C., 2002, Appl. Phys. Lett., 80, 1249. [18] Takeuchi, H., Han, D. and King, T-J., 2004, J. Vac. Sci. Technol. A, 22, 1337. [19] Zhao, X. and Vanderbilt, D., 2002, Phys. Rev. B, 65, 233106. [20] Anastassakis, E., Papanicolaou, P. and Asher, I.M., 1975, J. Phys. Chem. Solids, 36, 667. [21] Carlone, C., 1992, Phys. Rev. B, 45, 2079. [22] Hirata, T., 1994, Phys. Rev. B, 50, 2874. [23] Neumayer, D.A. and Cartier, E., 2001, J. Appl. Phys., 90, 1801. [24] Lesser, M., 1987, Opt. Eng., 26, 911. [25] Fadel, M., Azim, O.A., Omer, O.A. and Basily, R.R., 1998, Appl. Phys. A, 66, 335. [26] Aarik, J., Mändar, H., Kirm, M. and Pung, L., 2004, Thin Solid Films, 466, 41. [27] Callegari, A., Cartier, E., Gribelyuk, M., Okorn-Schmidt, J.F. and Zabel, T., 2001, J. Appl. Phys., 90, 6466. [28] Hernández-Rojas, J.L., Lucía, M.L., Mártil, I., González-Díaz, G., Santamaría, J. and Sánchez-Quesada, F., 1992, Appl. Opt., 31, 1606. [29] Martínez, F.L., del Prado, Á., Mártil, I., González-Díaz, G., Selle, B. and Sieber, I., 1999, J. Appl. Phys., 86, 2055. [30] Kern, W. and Puotinen, D., 1970, RCA Rev., 31, 187. [31] Martínez, F.L., Toledano, M., San Andrés, E., Mártil, I., González-Díaz, G., Bohne, W., Röhrich, J. and Strub, E., 2006, Thin Solid Films, 515, 695. [32] Toledano-Luque, M., San Andrés, E., Olea, J., del Prado, Á., Mártil, I., Bohne, W., Röhrich, J. and Strub, E., 2006, Mater. Sci. Semicond. Proc., 9, 1020. [33] Bohne, W., Röhrich, J. and Röschert, G., 1998, Nucl. Instrum. Methods B, 136–138, 633. [34] Bohne, W., Fuhs, W., Röhrich, J., Selle, B., González-Díaz, G., Mártil, I., Martínez, F.L. and del Prado, Á., 2000, Surf. Interface Anal., 30, 534. [35] Al-Kuhaili, M.F., 2004, Opt. Mater., 27, 383. [36] Swanepoel, R., 1983, J. Phys. E: Sci. Instrum., 16, 1214. [37] Nicollian, E.H. and Brews, J.R., 1982, MOS (Metal Oxide Semiconductor) Physics and Technology (New York: Wiley). [38] Hann, R.E., Suitch, P.R. and Pentecost, J.L., 1985, J. Am. Ceram. Soc., 68, C-285. [39] Cullity, B.D. and Stock, S.R., 2001, Elements of X-ray Diffraction (Upper Saddle River: Prentice-Hall). [40] Frank, M.M., Sayan, S., Dörmann, S., Emge, T.J., Wielunski, L.S., Garfunkel, E. and Chabal, Y.J., 2004, Mater. Sci. Eng. B, 109, 6. [41] Hu, H., Zhu, C., Lu, Y.F., Wu, Y.H., Liew, T., Li, M.F., Cho, B.J., Choi, W.K. and Yakolev, N., 2003, J. Appl. Phys., 94, 551. [42] Moreno-Marín, J.C., Abril, I. and García-Molina, R., 1999, J. Vac. Sci. Technol. A, 17, 528. [43] Winters, H.F., Coufal, H.J. and Eckstein, W., 1993, J. Vac. Sci. Technol. A, 11, 657. [44] Vossen, J.L. and Kern, W., 1991, Thin Film Processes II, (San Diego, CA: Academic). [45] Thornton, J.A., 1974, J. Vac. Sci. Technol., 11, 666. [46] Weast, R.C., Astle, M.J. and Beyer, W.H. (ed), 1987, CRC Handbook of Chemistry and Physics (Boca Raton, FL: CRC Press). [47] Teren, A.R., Thomas, R., He, J. and Ehrhart, P., 2005, Thin Solid Films, 478, 206. [48] Lengeler, B., 1990, Photoemission and Absorption Spectroscopy with Synchrotron Radiation, ed. Campagna, M. and Rosei, R., (Amsterdam: North-Holland). [49] Robertson, J., 1994, Phil. Mag. B, 69, 307. [50] Kato, H., Nango, T., Miyagawa, T., Katagiri, T., Seol, K.S. and Ohki, Y., 2002, J. Appl. Phys., 92, 1106. [51] Robertson, J., 2000, J. Vac. Sci. Technol. B, 18, 1785. [52] Morant, C., Fernández, A., González-Elipe, A.R., Soriano, L., Stampfl, A., Bradshaw, A.M. and Sanz, A.M., 1995, Phys. Rev. B, 52, 11711.
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublication.latestForDiscovery6db57595-2258-46f1-9cff-ed8287511c84

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,31.pdf
Size:
252.56 KB
Format:
Adobe Portable Document Format

Collections