Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering
dc.contributor.author | Martil De La Plaza, Ignacio | |
dc.date.accessioned | 2023-06-20T10:44:05Z | |
dc.date.available | 2023-06-20T10:44:05Z | |
dc.date.issued | 2007-09-07 | |
dc.description | © 2007 IOP Publishing Ltd. Parts of this work were done during a research stay of one of the authors (FLM) at the ISL of the HMI with support of a mobility grant (PR2004-0426) of the Spanish Ministry of Education and Science. It was also supported by the research project TEC2004/1237 and the research grant (AP2003-4434) of the same Ministry. Special thanks are given to the ISL and to the CAI-‘Tecnologías Físicas for a long trajectory of fruitful collaboration. | |
dc.description.abstract | Thin films of hafnium oxide ( HfO2) have been grown by high pressure reactive sputtering on transparent quartz substrates ( UV- grade silica) and silicon wafers. Deposition conditions were adjusted to obtain polycrystalline as well as amorphous films. Optical properties of the films deposited on the silica substrates were investigated by transmittance and reflectance spectroscopy in the ultraviolet, visible and near infrared range. A numerical analysis method that takes into account the different surface roughness of the polycrystalline and amorphous films was applied to calculate the optical constants ( refractive index and absorption coefficient). Amorphous films were found to have a higher refractive index and a lower transparency than polycrystalline films. This is attributed to a higher density of the amorphous samples, which was confirmed by atomic density measurements performed by heavy- ion elastic recoil detection analysis. The absorption coefficient gave an excellent fit to the Tauc law ( indirect gap), which allowed a band gap value of 5.54 eV to be obtained. The structure of the films ( amorphous or polycrystalline) was found to have no significant influence on the nature of the band gap. The Tauc plots also give information about the structure of the films, because the slope of the plot ( the Tauc parameter) is related to the degree of order in the bond network. The amorphous samples had a larger value of the Tauc parameter, i. e. more order than the polycrystalline samples. This is indicative of a uniform bond network with percolation of the bond chains, in contrast to the randomly oriented polycrystalline grains separated by grain boundaries. | |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Spanish Ministry of Education and Science | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/25982 | |
dc.identifier.doi | 10.1088/0022-3727/40/17/037 | |
dc.identifier.issn | 0022-3727 | |
dc.identifier.officialurl | http://dx.doi.org/10.1088/0022-3727/40/17/037 | |
dc.identifier.relatedurl | http://iopscience.iop.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/51105 | |
dc.issue.number | 17 | |
dc.journal.title | Journal of Physics D-Applied Physics | |
dc.language.iso | eng | |
dc.page.final | 5265 | |
dc.page.initial | 5256 | |
dc.publisher | IOP Publishing LTD | |
dc.relation.projectID | PR2004-0426 | |
dc.relation.projectID | TEC2004/1237 | |
dc.relation.projectID | AP2003-4434) | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 537 | |
dc.subject.keyword | Electron-Cyclotron-Resonance | |
dc.subject.keyword | Chemical-Vapor-Deposition | |
dc.subject.keyword | Hafnium Oxide | |
dc.subject.keyword | Spectroscopic Ellipsometry | |
dc.subject.keyword | Compositional Analysis | |
dc.subject.keyword | Amorphous-Silicon | |
dc.subject.keyword | Gate Dielectrics | |
dc.subject.keyword | Sioxnyhz Flms | |
dc.subject.keyword | Sin(X)-H Films | |
dc.subject.keyword | Plasma Method. | |
dc.subject.ucm | Electricidad | |
dc.subject.ucm | Electrónica (Física) | |
dc.subject.unesco | 2202.03 Electricidad | |
dc.title | Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering | |
dc.type | journal article | |
dc.volume.number | 40 | |
dcterms.references | [1] Wilk, G.D., Wallace, R.M. and Anthony, J.M., 2001, J. Appl. Phys., 89, 5243. [2] Kingdom, A.I., María, J.P. and Streiffer, S.K., 2000, Nature, 406, 1032. [3] Martínez, F.L., del Prado, Á., Mártil, I., González-Díaz, G., Bohne, W., Fuhs, W., Röhrich, J., Selle, B. and Sieber, I., 2001, Phys. Rev. B, 63, 245320. [4] Martínez, F.L., Ruíz-Merino, R., del Prado, Á., San Andrés, E., Mártil, I., González-Díaz, G., Jeynes, C., Barradas, N.P., Wang, L. and Reehal, H.S., 2004, Thin Solid Films, 459, 203. [5] Mártil, I., del Prado, Á., San Andrés, E., González-Díaz, G. and Martínez, F.L., 2003, J. Appl. Phys., 94, 2642. [6] San Andrés, E., del Prado, Á., Mártil, I., González-Díaz, G. and Martínez, F.L., 2003, J. Vac. Sci. Technol., 21, 1306. [7] del Prado, Á., San Andrés, E., Mártil, I., González-Díaz, G., Bravo, D., López, F.J., Fernández, M. and Martínez, F.L., 2003, J. Appl. Phys., 94, 1019. [8] del Prado, Á., San Andrés, E., Mártil, I., González-Díaz, G., Bravo, D., López, F.J., Bohne, W., Röhrich, J., Selle, B. and Martínez, F.L., 2003, J. Appl. Phys., 93, 8930. [9] del Prado, Á., San Andrés, E., Martínez, F.L., Mártil, I., González-Díaz, G., Bohne, W., Röhrich, J., Selle, B. and Fernández, M., 2002, Vacuum, 67, 507. [10] Buchanan, D.A., 1999, IBM J. Res. Dev., 43, 245. [11] San Andrés, E., Pantisano, L., Severi, S., Trojman, L., Ferain, I., Toledano-Luque, M., Jurczak, M., Groeseneken, G., De Gendt, S. and Heyns, M., Microelectr. Eng. at press. [12] Toledano-Luque, M., Pantisano, L., Degraeve, R., Zahid, M.B., Ferain, I., San Andrés, E., Groeseneken, G. and De Gendt, S., Microelectr. Eng. at press. [13] Robertson, J., 2006, Rep. Prog. Phys., 69, 327. [14] Poppe, U., et al., 1992, J. Appl. Phys., 71, 5572. [15] San Andrés, E., Toledano-Luque, M., del Prado, Á., Navacerrada, M.A., Mártil, I., González-Díaz, G., Bohne, W. and Röhrich, J., 2005, J. Vac. Sci. Technol. A, 23, 1523. [16] Saxena, A.N. and Mittal, K.L., 1975, J. Appl. Phys., 46, 2788. [17] Cho, Y.J., Nguyen, N.V., Richter, C.A., Ehrstein, J.R., Lee, B.H. and Lee, J.C., 2002, Appl. Phys. Lett., 80, 1249. [18] Takeuchi, H., Han, D. and King, T-J., 2004, J. Vac. Sci. Technol. A, 22, 1337. [19] Zhao, X. and Vanderbilt, D., 2002, Phys. Rev. B, 65, 233106. [20] Anastassakis, E., Papanicolaou, P. and Asher, I.M., 1975, J. Phys. Chem. Solids, 36, 667. [21] Carlone, C., 1992, Phys. Rev. B, 45, 2079. [22] Hirata, T., 1994, Phys. Rev. B, 50, 2874. [23] Neumayer, D.A. and Cartier, E., 2001, J. Appl. Phys., 90, 1801. [24] Lesser, M., 1987, Opt. Eng., 26, 911. [25] Fadel, M., Azim, O.A., Omer, O.A. and Basily, R.R., 1998, Appl. Phys. A, 66, 335. [26] Aarik, J., Mändar, H., Kirm, M. and Pung, L., 2004, Thin Solid Films, 466, 41. [27] Callegari, A., Cartier, E., Gribelyuk, M., Okorn-Schmidt, J.F. and Zabel, T., 2001, J. Appl. Phys., 90, 6466. [28] Hernández-Rojas, J.L., Lucía, M.L., Mártil, I., González-Díaz, G., Santamaría, J. and Sánchez-Quesada, F., 1992, Appl. Opt., 31, 1606. [29] Martínez, F.L., del Prado, Á., Mártil, I., González-Díaz, G., Selle, B. and Sieber, I., 1999, J. Appl. Phys., 86, 2055. [30] Kern, W. and Puotinen, D., 1970, RCA Rev., 31, 187. [31] Martínez, F.L., Toledano, M., San Andrés, E., Mártil, I., González-Díaz, G., Bohne, W., Röhrich, J. and Strub, E., 2006, Thin Solid Films, 515, 695. [32] Toledano-Luque, M., San Andrés, E., Olea, J., del Prado, Á., Mártil, I., Bohne, W., Röhrich, J. and Strub, E., 2006, Mater. Sci. Semicond. Proc., 9, 1020. [33] Bohne, W., Röhrich, J. and Röschert, G., 1998, Nucl. Instrum. Methods B, 136–138, 633. [34] Bohne, W., Fuhs, W., Röhrich, J., Selle, B., González-Díaz, G., Mártil, I., Martínez, F.L. and del Prado, Á., 2000, Surf. Interface Anal., 30, 534. [35] Al-Kuhaili, M.F., 2004, Opt. Mater., 27, 383. [36] Swanepoel, R., 1983, J. Phys. E: Sci. Instrum., 16, 1214. [37] Nicollian, E.H. and Brews, J.R., 1982, MOS (Metal Oxide Semiconductor) Physics and Technology (New York: Wiley). [38] Hann, R.E., Suitch, P.R. and Pentecost, J.L., 1985, J. Am. Ceram. Soc., 68, C-285. [39] Cullity, B.D. and Stock, S.R., 2001, Elements of X-ray Diffraction (Upper Saddle River: Prentice-Hall). [40] Frank, M.M., Sayan, S., Dörmann, S., Emge, T.J., Wielunski, L.S., Garfunkel, E. and Chabal, Y.J., 2004, Mater. Sci. Eng. B, 109, 6. [41] Hu, H., Zhu, C., Lu, Y.F., Wu, Y.H., Liew, T., Li, M.F., Cho, B.J., Choi, W.K. and Yakolev, N., 2003, J. Appl. Phys., 94, 551. [42] Moreno-Marín, J.C., Abril, I. and García-Molina, R., 1999, J. Vac. Sci. Technol. A, 17, 528. [43] Winters, H.F., Coufal, H.J. and Eckstein, W., 1993, J. Vac. Sci. Technol. A, 11, 657. [44] Vossen, J.L. and Kern, W., 1991, Thin Film Processes II, (San Diego, CA: Academic). [45] Thornton, J.A., 1974, J. Vac. Sci. Technol., 11, 666. [46] Weast, R.C., Astle, M.J. and Beyer, W.H. (ed), 1987, CRC Handbook of Chemistry and Physics (Boca Raton, FL: CRC Press). [47] Teren, A.R., Thomas, R., He, J. and Ehrhart, P., 2005, Thin Solid Films, 478, 206. [48] Lengeler, B., 1990, Photoemission and Absorption Spectroscopy with Synchrotron Radiation, ed. Campagna, M. and Rosei, R., (Amsterdam: North-Holland). [49] Robertson, J., 1994, Phil. Mag. B, 69, 307. [50] Kato, H., Nango, T., Miyagawa, T., Katagiri, T., Seol, K.S. and Ohki, Y., 2002, J. Appl. Phys., 92, 1106. [51] Robertson, J., 2000, J. Vac. Sci. Technol. B, 18, 1785. [52] Morant, C., Fernández, A., González-Elipe, A.R., Soriano, L., Stampfl, A., Bradshaw, A.M. and Sanz, A.M., 1995, Phys. Rev. B, 52, 11711. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6db57595-2258-46f1-9cff-ed8287511c84 | |
relation.isAuthorOfPublication.latestForDiscovery | 6db57595-2258-46f1-9cff-ed8287511c84 |
Download
Original bundle
1 - 1 of 1