Singular limit for a nonlinear parabolic equation with terms concentrating on the boundary
Loading...
Download
Full text at PDC
Publication date
2011
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citation
Abstract
We analyze the asymptotic behavior of the attractors of a parabolic problem when some reaction and potential terms are concentrated in a neighborhood of a portion Γ of the boundary and this neighborhood shrinks to Γ as a parameter ε goes to zero. We prove that the family of attractors is upper continuous at the ε=0.